The search functionality is under construction.

IEICE TRANSACTIONS on Communications

Reinforcement Learning for QoS-Constrained Autonomous Resource Allocation with H2H/M2M Co-Existence in Cellular Networks

Xing WEI, Xuehua LI, Shuo CHEN, Na LI

  • Full Text Views

    0

  • Cite this

Summary :

Machine-to-Machine (M2M) communication plays a pivotal role in the evolution of Internet of Things (IoT). Cellular networks are considered to be a key enabler for M2M communications, which are originally designed mainly for Human-to-Human (H2H) communications. The introduction of M2M users will cause a series of problems to traditional H2H users, i.e., interference between various traffic. Resource allocation is an effective solution to these problems. In this paper, we consider a shared resource block (RB) and power allocation in an H2H/M2M coexistence scenario, where M2M users are subdivided into delay-tolerant and delay-sensitive types. We first model the RB-power allocation problem as maximization of capacity under Quality-of-Service (QoS) constraints of different types of traffic. Then, a learning framework is introduced, wherein a complex agent is built from simpler subagents, which provides the basis for distributed deployment scheme. Further, we proposed distributed Q-learning based autonomous RB-power allocation algorithm (DQ-ARPA), which enables the machine type network gateways (MTCG) as agents to learn the wireless environment and choose the RB-power autonomously to maximize M2M pairs' capacity while ensuring the QoS requirements of critical services. Simulation results indicates that with an appropriate reward design, our proposed scheme succeeds in reducing the impact of delay-tolerant machine type users on critical services in terms of SINR thresholds and outage ratios.

Publication
IEICE TRANSACTIONS on Communications Vol.E105-B No.11 pp.1332-1341
Publication Date
2022/11/01
Publicized
2022/05/27
Online ISSN
1745-1345
DOI
10.1587/transcom.2021TMP0011
Type of Manuscript
Special Section PAPER (Special Section on Towards Management for Future Communications and Services in Conjunction with Main Topics of APNOMS2021)
Category

Authors

Xing WEI
  Beijing Information Science and Technology University
Xuehua LI
  Beijing Information Science and Technology University
Shuo CHEN
  Beijing Information Science and Technology University
Na LI
  the Baicells Technologies, Co., Ltd.

Keyword