Multi-carrier code division multiple access (MC-CDMA) is a promising wireless access technique for the next generation mobile communications systems, in which broadband packet data services will dominate. Hybrid automatic repeat request (HARQ) is an indispensable error control technique for high quality packet data transmission. The HARQ throughput performance of multi-code MC-CDMA degrades due to the presence of residual inter-code interference (ICI) after frequency-domain equalization (FDE). To reduce the residual ICI and improve the throughput performance, a frequency-domain soft interference cancellation (FDSIC) technique can be applied. An important issue is the generation of accurate residual ICI replica for FDSIC. In this paper, low-density parity-check coded (LDPC-coded) MC-CDMA HARQ is considered. We generate the residual ICI replica from a-posteriori log-likelihood ratio (LLR) of LDPC decoder output and evaluate, by computer simulation, the throughput performance in a frequency-selective Rayleigh fading channel. We show that if the residual ICI is removed, MC-CDMA can provide a throughput performance superior to orthogonal frequency division multiplexing (OFDM).
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kaoru FUKUDA, Akinori NAKAJIMA, Fumiyuki ADACHI, "Throughput Performance of MC-CDMA HARQ Using ICI Cancellation" in IEICE TRANSACTIONS on Communications,
vol. E92-B, no. 2, pp. 491-498, February 2009, doi: 10.1587/transcom.E92.B.491.
Abstract: Multi-carrier code division multiple access (MC-CDMA) is a promising wireless access technique for the next generation mobile communications systems, in which broadband packet data services will dominate. Hybrid automatic repeat request (HARQ) is an indispensable error control technique for high quality packet data transmission. The HARQ throughput performance of multi-code MC-CDMA degrades due to the presence of residual inter-code interference (ICI) after frequency-domain equalization (FDE). To reduce the residual ICI and improve the throughput performance, a frequency-domain soft interference cancellation (FDSIC) technique can be applied. An important issue is the generation of accurate residual ICI replica for FDSIC. In this paper, low-density parity-check coded (LDPC-coded) MC-CDMA HARQ is considered. We generate the residual ICI replica from a-posteriori log-likelihood ratio (LLR) of LDPC decoder output and evaluate, by computer simulation, the throughput performance in a frequency-selective Rayleigh fading channel. We show that if the residual ICI is removed, MC-CDMA can provide a throughput performance superior to orthogonal frequency division multiplexing (OFDM).
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E92.B.491/_p
Copy
@ARTICLE{e92-b_2_491,
author={Kaoru FUKUDA, Akinori NAKAJIMA, Fumiyuki ADACHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Throughput Performance of MC-CDMA HARQ Using ICI Cancellation},
year={2009},
volume={E92-B},
number={2},
pages={491-498},
abstract={Multi-carrier code division multiple access (MC-CDMA) is a promising wireless access technique for the next generation mobile communications systems, in which broadband packet data services will dominate. Hybrid automatic repeat request (HARQ) is an indispensable error control technique for high quality packet data transmission. The HARQ throughput performance of multi-code MC-CDMA degrades due to the presence of residual inter-code interference (ICI) after frequency-domain equalization (FDE). To reduce the residual ICI and improve the throughput performance, a frequency-domain soft interference cancellation (FDSIC) technique can be applied. An important issue is the generation of accurate residual ICI replica for FDSIC. In this paper, low-density parity-check coded (LDPC-coded) MC-CDMA HARQ is considered. We generate the residual ICI replica from a-posteriori log-likelihood ratio (LLR) of LDPC decoder output and evaluate, by computer simulation, the throughput performance in a frequency-selective Rayleigh fading channel. We show that if the residual ICI is removed, MC-CDMA can provide a throughput performance superior to orthogonal frequency division multiplexing (OFDM).},
keywords={},
doi={10.1587/transcom.E92.B.491},
ISSN={1745-1345},
month={February},}
Copy
TY - JOUR
TI - Throughput Performance of MC-CDMA HARQ Using ICI Cancellation
T2 - IEICE TRANSACTIONS on Communications
SP - 491
EP - 498
AU - Kaoru FUKUDA
AU - Akinori NAKAJIMA
AU - Fumiyuki ADACHI
PY - 2009
DO - 10.1587/transcom.E92.B.491
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E92-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 2009
AB - Multi-carrier code division multiple access (MC-CDMA) is a promising wireless access technique for the next generation mobile communications systems, in which broadband packet data services will dominate. Hybrid automatic repeat request (HARQ) is an indispensable error control technique for high quality packet data transmission. The HARQ throughput performance of multi-code MC-CDMA degrades due to the presence of residual inter-code interference (ICI) after frequency-domain equalization (FDE). To reduce the residual ICI and improve the throughput performance, a frequency-domain soft interference cancellation (FDSIC) technique can be applied. An important issue is the generation of accurate residual ICI replica for FDSIC. In this paper, low-density parity-check coded (LDPC-coded) MC-CDMA HARQ is considered. We generate the residual ICI replica from a-posteriori log-likelihood ratio (LLR) of LDPC decoder output and evaluate, by computer simulation, the throughput performance in a frequency-selective Rayleigh fading channel. We show that if the residual ICI is removed, MC-CDMA can provide a throughput performance superior to orthogonal frequency division multiplexing (OFDM).
ER -