Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takaaki SAEKI, Koji YAMAMOTO, Hidekazu MURATA, Susumu YOSHIDA, "Impact and Use of the Asymmetric Property in Bi-directional Cooperative Relaying under Asymmetric Traffic Conditions" in IEICE TRANSACTIONS on Communications,
vol. E93-B, no. 8, pp. 2126-2134, August 2010, doi: 10.1587/transcom.E93.B.2126.
Abstract: Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E93.B.2126/_p
Copy
@ARTICLE{e93-b_8_2126,
author={Takaaki SAEKI, Koji YAMAMOTO, Hidekazu MURATA, Susumu YOSHIDA, },
journal={IEICE TRANSACTIONS on Communications},
title={Impact and Use of the Asymmetric Property in Bi-directional Cooperative Relaying under Asymmetric Traffic Conditions},
year={2010},
volume={E93-B},
number={8},
pages={2126-2134},
abstract={Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.},
keywords={},
doi={10.1587/transcom.E93.B.2126},
ISSN={1745-1345},
month={August},}
Copy
TY - JOUR
TI - Impact and Use of the Asymmetric Property in Bi-directional Cooperative Relaying under Asymmetric Traffic Conditions
T2 - IEICE TRANSACTIONS on Communications
SP - 2126
EP - 2134
AU - Takaaki SAEKI
AU - Koji YAMAMOTO
AU - Hidekazu MURATA
AU - Susumu YOSHIDA
PY - 2010
DO - 10.1587/transcom.E93.B.2126
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E93-B
IS - 8
JA - IEICE TRANSACTIONS on Communications
Y1 - August 2010
AB - Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.
ER -