The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Koichi ADACHI, Masao NAKAGAWA, "On the Construction of Orthogonal Spreading Code Groups for MC-CDMA with FDE in a Frequency Selective Channel" in IEICE TRANSACTIONS on Communications,
vol. E93-B, no. 3, pp. 650-659, March 2010, doi: 10.1587/transcom.E93.B.650.
Abstract: The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E93.B.650/_p
Copy
@ARTICLE{e93-b_3_650,
author={Koichi ADACHI, Masao NAKAGAWA, },
journal={IEICE TRANSACTIONS on Communications},
title={On the Construction of Orthogonal Spreading Code Groups for MC-CDMA with FDE in a Frequency Selective Channel},
year={2010},
volume={E93-B},
number={3},
pages={650-659},
abstract={The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.},
keywords={},
doi={10.1587/transcom.E93.B.650},
ISSN={1745-1345},
month={March},}
Copy
TY - JOUR
TI - On the Construction of Orthogonal Spreading Code Groups for MC-CDMA with FDE in a Frequency Selective Channel
T2 - IEICE TRANSACTIONS on Communications
SP - 650
EP - 659
AU - Koichi ADACHI
AU - Masao NAKAGAWA
PY - 2010
DO - 10.1587/transcom.E93.B.650
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E93-B
IS - 3
JA - IEICE TRANSACTIONS on Communications
Y1 - March 2010
AB - The bit error rate (BER) performance of multicode multi-carrier code division multiple access (MC-CDMA) severely degrades due to the inter-code interference (ICI) in a strong frequency-selective channel. Recently a spreading code group construction method was proposed for MC-CDMA. The Walsh-Hadmard (WH) codes are divided into a number of code groups such that the code orthogonality can be maintained within each group even in a strong frequency-selective channel; any code pair taken from different groups is not orthogonal. The number of spreading codes in each group is determined by the maximum time delay difference of the channel. In this paper, we point out that the number of codes in each group is determined by the distribution of time delay differences among the propagation paths of the channel, not the maximum time delay difference. Based on that observation, we show that more orthogonal spreading codes can exist in each code group. The conditional BER is derived taking into account the interference from other code groups and the achievable downlink BER performance using the proposed spreading code group construction is numerically evaluated in a frequency-selective Rayleigh fading channel.
ER -