Telecommunications networks have become an important social infrastructure, and their robustness is considered to be a matter of social significance. Conventional network planning methods are generally based on the maximum volume of ordinary traffic and only assume explicitly specified failure scenarios. Therefore, present networks have marginal survivability against multiple failures induced by an extraordinarily high volume of traffic generated during times of natural disasters or popular social events. This paper proposes a telecommunications network planning method based on probabilistic risk assessment. In this method, risk criterion reflecting the degree of risk due to extraordinarily large traffic loads is predefined and estimated using probabilistic risk assessment. The probabilistic risk assessment can efficiently calculate the small but non-negligible probability that a series of multiple failures will occur in the considered network. Detailed procedures for the proposed planning method are explained using a district mobile network in terms of the extraordinarily large traffic volume resulting from earthquakes. As an application example of the proposed method, capacity dimensioning for the local session servers within the district mobile network is executed to reduce the risk criterion most effectively. Moreover, the optimum traffic-rerouting scheme that minimizes the estimated risk criterion is ascertained simultaneously. From the application example, the proposed planning method is verified to realize a telecommunications network with sufficient robustness against the extraordinarily high volume of traffic caused by the earthquakes.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Nagao OGINO, Hajime NAKAMURA, "Telecommunications Network Planning Method Based on Probabilistic Risk Assessment" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 12, pp. 3459-3470, December 2011, doi: 10.1587/transcom.E94.B.3459.
Abstract: Telecommunications networks have become an important social infrastructure, and their robustness is considered to be a matter of social significance. Conventional network planning methods are generally based on the maximum volume of ordinary traffic and only assume explicitly specified failure scenarios. Therefore, present networks have marginal survivability against multiple failures induced by an extraordinarily high volume of traffic generated during times of natural disasters or popular social events. This paper proposes a telecommunications network planning method based on probabilistic risk assessment. In this method, risk criterion reflecting the degree of risk due to extraordinarily large traffic loads is predefined and estimated using probabilistic risk assessment. The probabilistic risk assessment can efficiently calculate the small but non-negligible probability that a series of multiple failures will occur in the considered network. Detailed procedures for the proposed planning method are explained using a district mobile network in terms of the extraordinarily large traffic volume resulting from earthquakes. As an application example of the proposed method, capacity dimensioning for the local session servers within the district mobile network is executed to reduce the risk criterion most effectively. Moreover, the optimum traffic-rerouting scheme that minimizes the estimated risk criterion is ascertained simultaneously. From the application example, the proposed planning method is verified to realize a telecommunications network with sufficient robustness against the extraordinarily high volume of traffic caused by the earthquakes.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.3459/_p
Copy
@ARTICLE{e94-b_12_3459,
author={Nagao OGINO, Hajime NAKAMURA, },
journal={IEICE TRANSACTIONS on Communications},
title={Telecommunications Network Planning Method Based on Probabilistic Risk Assessment},
year={2011},
volume={E94-B},
number={12},
pages={3459-3470},
abstract={Telecommunications networks have become an important social infrastructure, and their robustness is considered to be a matter of social significance. Conventional network planning methods are generally based on the maximum volume of ordinary traffic and only assume explicitly specified failure scenarios. Therefore, present networks have marginal survivability against multiple failures induced by an extraordinarily high volume of traffic generated during times of natural disasters or popular social events. This paper proposes a telecommunications network planning method based on probabilistic risk assessment. In this method, risk criterion reflecting the degree of risk due to extraordinarily large traffic loads is predefined and estimated using probabilistic risk assessment. The probabilistic risk assessment can efficiently calculate the small but non-negligible probability that a series of multiple failures will occur in the considered network. Detailed procedures for the proposed planning method are explained using a district mobile network in terms of the extraordinarily large traffic volume resulting from earthquakes. As an application example of the proposed method, capacity dimensioning for the local session servers within the district mobile network is executed to reduce the risk criterion most effectively. Moreover, the optimum traffic-rerouting scheme that minimizes the estimated risk criterion is ascertained simultaneously. From the application example, the proposed planning method is verified to realize a telecommunications network with sufficient robustness against the extraordinarily high volume of traffic caused by the earthquakes.},
keywords={},
doi={10.1587/transcom.E94.B.3459},
ISSN={1745-1345},
month={December},}
Copy
TY - JOUR
TI - Telecommunications Network Planning Method Based on Probabilistic Risk Assessment
T2 - IEICE TRANSACTIONS on Communications
SP - 3459
EP - 3470
AU - Nagao OGINO
AU - Hajime NAKAMURA
PY - 2011
DO - 10.1587/transcom.E94.B.3459
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 12
JA - IEICE TRANSACTIONS on Communications
Y1 - December 2011
AB - Telecommunications networks have become an important social infrastructure, and their robustness is considered to be a matter of social significance. Conventional network planning methods are generally based on the maximum volume of ordinary traffic and only assume explicitly specified failure scenarios. Therefore, present networks have marginal survivability against multiple failures induced by an extraordinarily high volume of traffic generated during times of natural disasters or popular social events. This paper proposes a telecommunications network planning method based on probabilistic risk assessment. In this method, risk criterion reflecting the degree of risk due to extraordinarily large traffic loads is predefined and estimated using probabilistic risk assessment. The probabilistic risk assessment can efficiently calculate the small but non-negligible probability that a series of multiple failures will occur in the considered network. Detailed procedures for the proposed planning method are explained using a district mobile network in terms of the extraordinarily large traffic volume resulting from earthquakes. As an application example of the proposed method, capacity dimensioning for the local session servers within the district mobile network is executed to reduce the risk criterion most effectively. Moreover, the optimum traffic-rerouting scheme that minimizes the estimated risk criterion is ascertained simultaneously. From the application example, the proposed planning method is verified to realize a telecommunications network with sufficient robustness against the extraordinarily high volume of traffic caused by the earthquakes.
ER -