A key challenge in developing energy-efficient sensor networks is to extend network lifetime in resource-limited environments. As sensors are often densely distributed, they can be scheduled on alternative duty cycles to conserve energy while satisfying the system requirements. Directional sensor networks composed of a large number of directional sensors equipped with a limited battery and with a limited angle of sensing have recently attracted attention. Many types of directional sensors can rotate to face a given direction. Maximizing network lifetime while covering all of the targets in a given area and forwarding sensor data to the sink is a challenge in developing such rotatable directional sensor networks. In this paper, we address the maximum directional cover tree (MDCT) problem of organizing directional sensors into a group of non-disjoint subsets to extend network lifetime. One subset, in which the directional sensors cover all of the targets and forward the data to the sink, is activated at a time, while the others sleep to conserve energy. For the MDCT problem, we first present an energy-consumption model that mainly takes into account the energy expenditure for sensor rotation as well as for the sensing and relaying of data. We also develop a heuristic scheduling algorithm called directional coverage and connectivity (DCC)-greedy to solve the MDCT problem. To verify and evaluate the algorithm, we conduct extensive simulations and show that it extends network lifetime to a reasonable degree.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Youn-Hee HAN, Chan-Myung KIM, Joon-Min GIL, "A Scheduling Algorithm for Connected Target Coverage in Rotatable Directional Sensor Networks" in IEICE TRANSACTIONS on Communications,
vol. E95-B, no. 4, pp. 1317-1328, April 2012, doi: 10.1587/transcom.E95.B.1317.
Abstract: A key challenge in developing energy-efficient sensor networks is to extend network lifetime in resource-limited environments. As sensors are often densely distributed, they can be scheduled on alternative duty cycles to conserve energy while satisfying the system requirements. Directional sensor networks composed of a large number of directional sensors equipped with a limited battery and with a limited angle of sensing have recently attracted attention. Many types of directional sensors can rotate to face a given direction. Maximizing network lifetime while covering all of the targets in a given area and forwarding sensor data to the sink is a challenge in developing such rotatable directional sensor networks. In this paper, we address the maximum directional cover tree (MDCT) problem of organizing directional sensors into a group of non-disjoint subsets to extend network lifetime. One subset, in which the directional sensors cover all of the targets and forward the data to the sink, is activated at a time, while the others sleep to conserve energy. For the MDCT problem, we first present an energy-consumption model that mainly takes into account the energy expenditure for sensor rotation as well as for the sensing and relaying of data. We also develop a heuristic scheduling algorithm called directional coverage and connectivity (DCC)-greedy to solve the MDCT problem. To verify and evaluate the algorithm, we conduct extensive simulations and show that it extends network lifetime to a reasonable degree.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E95.B.1317/_p
Copy
@ARTICLE{e95-b_4_1317,
author={Youn-Hee HAN, Chan-Myung KIM, Joon-Min GIL, },
journal={IEICE TRANSACTIONS on Communications},
title={A Scheduling Algorithm for Connected Target Coverage in Rotatable Directional Sensor Networks},
year={2012},
volume={E95-B},
number={4},
pages={1317-1328},
abstract={A key challenge in developing energy-efficient sensor networks is to extend network lifetime in resource-limited environments. As sensors are often densely distributed, they can be scheduled on alternative duty cycles to conserve energy while satisfying the system requirements. Directional sensor networks composed of a large number of directional sensors equipped with a limited battery and with a limited angle of sensing have recently attracted attention. Many types of directional sensors can rotate to face a given direction. Maximizing network lifetime while covering all of the targets in a given area and forwarding sensor data to the sink is a challenge in developing such rotatable directional sensor networks. In this paper, we address the maximum directional cover tree (MDCT) problem of organizing directional sensors into a group of non-disjoint subsets to extend network lifetime. One subset, in which the directional sensors cover all of the targets and forward the data to the sink, is activated at a time, while the others sleep to conserve energy. For the MDCT problem, we first present an energy-consumption model that mainly takes into account the energy expenditure for sensor rotation as well as for the sensing and relaying of data. We also develop a heuristic scheduling algorithm called directional coverage and connectivity (DCC)-greedy to solve the MDCT problem. To verify and evaluate the algorithm, we conduct extensive simulations and show that it extends network lifetime to a reasonable degree.},
keywords={},
doi={10.1587/transcom.E95.B.1317},
ISSN={1745-1345},
month={April},}
Copy
TY - JOUR
TI - A Scheduling Algorithm for Connected Target Coverage in Rotatable Directional Sensor Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 1317
EP - 1328
AU - Youn-Hee HAN
AU - Chan-Myung KIM
AU - Joon-Min GIL
PY - 2012
DO - 10.1587/transcom.E95.B.1317
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E95-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2012
AB - A key challenge in developing energy-efficient sensor networks is to extend network lifetime in resource-limited environments. As sensors are often densely distributed, they can be scheduled on alternative duty cycles to conserve energy while satisfying the system requirements. Directional sensor networks composed of a large number of directional sensors equipped with a limited battery and with a limited angle of sensing have recently attracted attention. Many types of directional sensors can rotate to face a given direction. Maximizing network lifetime while covering all of the targets in a given area and forwarding sensor data to the sink is a challenge in developing such rotatable directional sensor networks. In this paper, we address the maximum directional cover tree (MDCT) problem of organizing directional sensors into a group of non-disjoint subsets to extend network lifetime. One subset, in which the directional sensors cover all of the targets and forward the data to the sink, is activated at a time, while the others sleep to conserve energy. For the MDCT problem, we first present an energy-consumption model that mainly takes into account the energy expenditure for sensor rotation as well as for the sensing and relaying of data. We also develop a heuristic scheduling algorithm called directional coverage and connectivity (DCC)-greedy to solve the MDCT problem. To verify and evaluate the algorithm, we conduct extensive simulations and show that it extends network lifetime to a reasonable degree.
ER -