Most large-scale Peer-to-Peer (P2P) live streaming systems are constructed as a mesh structure, which can provide robustness in the dynamic P2P environment. The pull scheduling algorithm is widely used in this mesh structure, which degrades the performance of the entire system. Recently, network coding was introduced in mesh P2P streaming systems to improve the performance, which makes the push strategy feasible. One of the most famous scheduling algorithms based on network coding is R2, with a random push strategy. Although R2 has achieved some success, the push scheduling strategy still lacks a theoretical model and optimal solution. In this paper, we propose a novel optimal pull-push scheduling algorithm based on network coding, which consists of two stages: the initial pull stage and the push stage. The main contributions of this paper are: 1) we put forward a theoretical analysis model that considers the scarcity and timeliness of segments; 2) we formulate the push scheduling problem to be a global optimization problem and decompose it into local optimization problems on individual peers; 3) we introduce some rules to transform the local optimization problem into a classical min-cost optimization problem for solving it; 4) We combine the pull strategy with the push strategy and systematically realize our scheduling algorithm. Simulation results demonstrate that decode delay, decode ratio and redundant fraction of the P2P streaming system with our algorithm can be significantly improved, without losing throughput and increasing overhead.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Laizhong CUI, Yong JIANG, Jianping WU, Shutao XIA, "An Optimal Pull-Push Scheduling Algorithm Based on Network Coding for Mesh Peer-to-Peer Live Streaming" in IEICE TRANSACTIONS on Communications,
vol. E95-B, no. 6, pp. 2022-2033, June 2012, doi: 10.1587/transcom.E95.B.2022.
Abstract: Most large-scale Peer-to-Peer (P2P) live streaming systems are constructed as a mesh structure, which can provide robustness in the dynamic P2P environment. The pull scheduling algorithm is widely used in this mesh structure, which degrades the performance of the entire system. Recently, network coding was introduced in mesh P2P streaming systems to improve the performance, which makes the push strategy feasible. One of the most famous scheduling algorithms based on network coding is R2, with a random push strategy. Although R2 has achieved some success, the push scheduling strategy still lacks a theoretical model and optimal solution. In this paper, we propose a novel optimal pull-push scheduling algorithm based on network coding, which consists of two stages: the initial pull stage and the push stage. The main contributions of this paper are: 1) we put forward a theoretical analysis model that considers the scarcity and timeliness of segments; 2) we formulate the push scheduling problem to be a global optimization problem and decompose it into local optimization problems on individual peers; 3) we introduce some rules to transform the local optimization problem into a classical min-cost optimization problem for solving it; 4) We combine the pull strategy with the push strategy and systematically realize our scheduling algorithm. Simulation results demonstrate that decode delay, decode ratio and redundant fraction of the P2P streaming system with our algorithm can be significantly improved, without losing throughput and increasing overhead.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E95.B.2022/_p
Copy
@ARTICLE{e95-b_6_2022,
author={Laizhong CUI, Yong JIANG, Jianping WU, Shutao XIA, },
journal={IEICE TRANSACTIONS on Communications},
title={An Optimal Pull-Push Scheduling Algorithm Based on Network Coding for Mesh Peer-to-Peer Live Streaming},
year={2012},
volume={E95-B},
number={6},
pages={2022-2033},
abstract={Most large-scale Peer-to-Peer (P2P) live streaming systems are constructed as a mesh structure, which can provide robustness in the dynamic P2P environment. The pull scheduling algorithm is widely used in this mesh structure, which degrades the performance of the entire system. Recently, network coding was introduced in mesh P2P streaming systems to improve the performance, which makes the push strategy feasible. One of the most famous scheduling algorithms based on network coding is R2, with a random push strategy. Although R2 has achieved some success, the push scheduling strategy still lacks a theoretical model and optimal solution. In this paper, we propose a novel optimal pull-push scheduling algorithm based on network coding, which consists of two stages: the initial pull stage and the push stage. The main contributions of this paper are: 1) we put forward a theoretical analysis model that considers the scarcity and timeliness of segments; 2) we formulate the push scheduling problem to be a global optimization problem and decompose it into local optimization problems on individual peers; 3) we introduce some rules to transform the local optimization problem into a classical min-cost optimization problem for solving it; 4) We combine the pull strategy with the push strategy and systematically realize our scheduling algorithm. Simulation results demonstrate that decode delay, decode ratio and redundant fraction of the P2P streaming system with our algorithm can be significantly improved, without losing throughput and increasing overhead.},
keywords={},
doi={10.1587/transcom.E95.B.2022},
ISSN={1745-1345},
month={June},}
Copy
TY - JOUR
TI - An Optimal Pull-Push Scheduling Algorithm Based on Network Coding for Mesh Peer-to-Peer Live Streaming
T2 - IEICE TRANSACTIONS on Communications
SP - 2022
EP - 2033
AU - Laizhong CUI
AU - Yong JIANG
AU - Jianping WU
AU - Shutao XIA
PY - 2012
DO - 10.1587/transcom.E95.B.2022
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E95-B
IS - 6
JA - IEICE TRANSACTIONS on Communications
Y1 - June 2012
AB - Most large-scale Peer-to-Peer (P2P) live streaming systems are constructed as a mesh structure, which can provide robustness in the dynamic P2P environment. The pull scheduling algorithm is widely used in this mesh structure, which degrades the performance of the entire system. Recently, network coding was introduced in mesh P2P streaming systems to improve the performance, which makes the push strategy feasible. One of the most famous scheduling algorithms based on network coding is R2, with a random push strategy. Although R2 has achieved some success, the push scheduling strategy still lacks a theoretical model and optimal solution. In this paper, we propose a novel optimal pull-push scheduling algorithm based on network coding, which consists of two stages: the initial pull stage and the push stage. The main contributions of this paper are: 1) we put forward a theoretical analysis model that considers the scarcity and timeliness of segments; 2) we formulate the push scheduling problem to be a global optimization problem and decompose it into local optimization problems on individual peers; 3) we introduce some rules to transform the local optimization problem into a classical min-cost optimization problem for solving it; 4) We combine the pull strategy with the push strategy and systematically realize our scheduling algorithm. Simulation results demonstrate that decode delay, decode ratio and redundant fraction of the P2P streaming system with our algorithm can be significantly improved, without losing throughput and increasing overhead.
ER -