The search functionality is under construction.

IEICE TRANSACTIONS on Communications

Pattern Reconstruction for Deviated AUT in Spherical Measurement by Using Spherical Waves

Yang MIAO, Jun-ichi TAKADA

  • Full Text Views

    0

  • Cite this

Summary :

To characterize an antenna, the acquisition of its three-dimensional radiation pattern is the fundamental requirement. Spherical antenna measurement is a practical approach to measuring antenna patterns in spherical geometry. However, due to the limitations of measurement range and measurement time, the measured samples may either be incomplete on scanning sphere, or be inadequate in terms of the sampling interval. Therefore there is a need to extrapolate and interpolate the measured samples. Spherical wave expansion, whose band-limited property is derived from the sampling theorem, provides a good tool for reconstructing antenna patterns. This research identifies the limitation of the conventional algorithm when reconstructing the pattern of an antenna which is not located at the coordinate origin of the measurement set-up. A novel algorithm is proposed to overcome the limitation by resampling between the unprimed and primed (where the antenna is centred) coordinate systems. The resampling of measured samples from the unprimed coordinate to the primed coordinate can be conducted by translational phase shift, and the resampling of reconstructed pattern from the primed coordinate back to the unprimed coordinate can be accomplished by rotation and translation of spherical waves. The proposed algorithm enables the analytical and continuous pattern reconstruction, even under the severe sampling condition for deviated AUT. Numerical investigations are conducted to validate the proposed algorithm.

Publication
IEICE TRANSACTIONS on Communications Vol.E97-B No.1 pp.105-113
Publication Date
2014/01/01
Publicized
Online ISSN
1745-1345
DOI
10.1587/transcom.E97.B.105
Type of Manuscript
PAPER
Category
Antennas and Propagation

Authors

Yang MIAO
  Tokyo Institute of Technology
Jun-ichi TAKADA
  Tokyo Institute of Technology

Keyword