Despite the increasing use of mobile computing, exploiting its full potential is difficult due to its inherent characteristics such as error-prone transmission channels, diverse node capabilities, frequent disconnections and mobility. Mobile Cloud Computing (MCC) is a paradigm that is aimed at overcoming previous problems through integrating mobile devices with cloud computing. Mobile devices, in the traditional client-server architecture of MCC, offload their tasks to the cloud to utilize the computation and storage resources of data centers. However, along with the development of hardware and software technologies in mobile devices, researchers have begun to take into consideration local resource sharing among mobile devices themselves. This is defined as the cooperation based architecture of MCC. Analogous to the conventional terminology, the resource platforms that are comprised of surrounding surrogate mobile devices are called local resource clouds. Some researchers have recently verified the feasibility and benefits of this strategy. However, existing work has neglected an important issue with this approach, i.e., how to construct local resource clouds in dynamic mobile wireless networks. This paper presents the concept and design of a local resource cloud that is both energy and time efficient. Along with theoretical models and formal definitions of problems, an efficient heuristic algorithm with low computational complexity is also presented. The results from simulations demonstrate the effectiveness of the proposed models and method.
Wei LIU
Kyoto University
Ryoichi SHINKUMA
Kyoto University
Tatsuro TAKAHASHI
Kyoto University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Wei LIU, Ryoichi SHINKUMA, Tatsuro TAKAHASHI, "A Local Resource Sharing Platform in Mobile Cloud Computing" in IEICE TRANSACTIONS on Communications,
vol. E97-B, no. 9, pp. 1865-1874, September 2014, doi: 10.1587/transcom.E97.B.1865.
Abstract: Despite the increasing use of mobile computing, exploiting its full potential is difficult due to its inherent characteristics such as error-prone transmission channels, diverse node capabilities, frequent disconnections and mobility. Mobile Cloud Computing (MCC) is a paradigm that is aimed at overcoming previous problems through integrating mobile devices with cloud computing. Mobile devices, in the traditional client-server architecture of MCC, offload their tasks to the cloud to utilize the computation and storage resources of data centers. However, along with the development of hardware and software technologies in mobile devices, researchers have begun to take into consideration local resource sharing among mobile devices themselves. This is defined as the cooperation based architecture of MCC. Analogous to the conventional terminology, the resource platforms that are comprised of surrounding surrogate mobile devices are called local resource clouds. Some researchers have recently verified the feasibility and benefits of this strategy. However, existing work has neglected an important issue with this approach, i.e., how to construct local resource clouds in dynamic mobile wireless networks. This paper presents the concept and design of a local resource cloud that is both energy and time efficient. Along with theoretical models and formal definitions of problems, an efficient heuristic algorithm with low computational complexity is also presented. The results from simulations demonstrate the effectiveness of the proposed models and method.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E97.B.1865/_p
Copy
@ARTICLE{e97-b_9_1865,
author={Wei LIU, Ryoichi SHINKUMA, Tatsuro TAKAHASHI, },
journal={IEICE TRANSACTIONS on Communications},
title={A Local Resource Sharing Platform in Mobile Cloud Computing},
year={2014},
volume={E97-B},
number={9},
pages={1865-1874},
abstract={Despite the increasing use of mobile computing, exploiting its full potential is difficult due to its inherent characteristics such as error-prone transmission channels, diverse node capabilities, frequent disconnections and mobility. Mobile Cloud Computing (MCC) is a paradigm that is aimed at overcoming previous problems through integrating mobile devices with cloud computing. Mobile devices, in the traditional client-server architecture of MCC, offload their tasks to the cloud to utilize the computation and storage resources of data centers. However, along with the development of hardware and software technologies in mobile devices, researchers have begun to take into consideration local resource sharing among mobile devices themselves. This is defined as the cooperation based architecture of MCC. Analogous to the conventional terminology, the resource platforms that are comprised of surrounding surrogate mobile devices are called local resource clouds. Some researchers have recently verified the feasibility and benefits of this strategy. However, existing work has neglected an important issue with this approach, i.e., how to construct local resource clouds in dynamic mobile wireless networks. This paper presents the concept and design of a local resource cloud that is both energy and time efficient. Along with theoretical models and formal definitions of problems, an efficient heuristic algorithm with low computational complexity is also presented. The results from simulations demonstrate the effectiveness of the proposed models and method.},
keywords={},
doi={10.1587/transcom.E97.B.1865},
ISSN={1745-1345},
month={September},}
Copy
TY - JOUR
TI - A Local Resource Sharing Platform in Mobile Cloud Computing
T2 - IEICE TRANSACTIONS on Communications
SP - 1865
EP - 1874
AU - Wei LIU
AU - Ryoichi SHINKUMA
AU - Tatsuro TAKAHASHI
PY - 2014
DO - 10.1587/transcom.E97.B.1865
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E97-B
IS - 9
JA - IEICE TRANSACTIONS on Communications
Y1 - September 2014
AB - Despite the increasing use of mobile computing, exploiting its full potential is difficult due to its inherent characteristics such as error-prone transmission channels, diverse node capabilities, frequent disconnections and mobility. Mobile Cloud Computing (MCC) is a paradigm that is aimed at overcoming previous problems through integrating mobile devices with cloud computing. Mobile devices, in the traditional client-server architecture of MCC, offload their tasks to the cloud to utilize the computation and storage resources of data centers. However, along with the development of hardware and software technologies in mobile devices, researchers have begun to take into consideration local resource sharing among mobile devices themselves. This is defined as the cooperation based architecture of MCC. Analogous to the conventional terminology, the resource platforms that are comprised of surrounding surrogate mobile devices are called local resource clouds. Some researchers have recently verified the feasibility and benefits of this strategy. However, existing work has neglected an important issue with this approach, i.e., how to construct local resource clouds in dynamic mobile wireless networks. This paper presents the concept and design of a local resource cloud that is both energy and time efficient. Along with theoretical models and formal definitions of problems, an efficient heuristic algorithm with low computational complexity is also presented. The results from simulations demonstrate the effectiveness of the proposed models and method.
ER -