In this paper, we study a distributed time-reversal space-time block coded single-carrier (D-TR-STBC-SC) system for amplify-and-forward (AF) half-duplex relaying in frequency-selective Rayleigh fading channels. Under the imperfect channel estimation condition, we analyze the mean-square-error (MSE) performance of the optimal and channel-mismatched frequency domain minimum MSE (FD-MMSE) and least square (LS) equalization. Our analysis results show that, unlike the point-to-point communications, the channel-mismatched FD-MMSE equalization of D-TR-STBC-SC relaying network leads to the ceiling effect that the MSE increases as the signal-to-noise ratio (SNR) of relay-to-destination link increases. Decomposing the MSE, it is found that the primary cause of the ceiling effect is the source-to-destination link in the first time-slot, which makes the covariance matrix of noise vector ill-conditioned. In order to resolve the channel-mismatching problems in the equalization process, we develop optimum relay power control strategies by considering practical channel estimations, i.e., training-based LS and linear minimum MSE (LMMSE) channel estimations. It is shown that the optimum power control resolves the trade-off between MSE performance and relay power consumption, and improves the robustness against the channel-mismatching. Finally, we introduce a performance evaluation to demonstrate the performance of channel equalization combined with the proposed power controls in D-TR-STBC-SC relaying network.
Jeong-Min CHOI
Yonsei University
Robin SHRESTHA
Yonsei University
Sungho JEON
Korean Broadcasting System (KBS)
Jong-Soo SEO
Yonsei University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jeong-Min CHOI, Robin SHRESTHA, Sungho JEON, Jong-Soo SEO, "A Study on the Performance of Channel-Mismatched Equalizations in D-TR-STBC-SC Relaying Network" in IEICE TRANSACTIONS on Communications,
vol. E98-B, no. 10, pp. 2079-2096, October 2015, doi: 10.1587/transcom.E98.B.2079.
Abstract: In this paper, we study a distributed time-reversal space-time block coded single-carrier (D-TR-STBC-SC) system for amplify-and-forward (AF) half-duplex relaying in frequency-selective Rayleigh fading channels. Under the imperfect channel estimation condition, we analyze the mean-square-error (MSE) performance of the optimal and channel-mismatched frequency domain minimum MSE (FD-MMSE) and least square (LS) equalization. Our analysis results show that, unlike the point-to-point communications, the channel-mismatched FD-MMSE equalization of D-TR-STBC-SC relaying network leads to the ceiling effect that the MSE increases as the signal-to-noise ratio (SNR) of relay-to-destination link increases. Decomposing the MSE, it is found that the primary cause of the ceiling effect is the source-to-destination link in the first time-slot, which makes the covariance matrix of noise vector ill-conditioned. In order to resolve the channel-mismatching problems in the equalization process, we develop optimum relay power control strategies by considering practical channel estimations, i.e., training-based LS and linear minimum MSE (LMMSE) channel estimations. It is shown that the optimum power control resolves the trade-off between MSE performance and relay power consumption, and improves the robustness against the channel-mismatching. Finally, we introduce a performance evaluation to demonstrate the performance of channel equalization combined with the proposed power controls in D-TR-STBC-SC relaying network.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E98.B.2079/_p
Copy
@ARTICLE{e98-b_10_2079,
author={Jeong-Min CHOI, Robin SHRESTHA, Sungho JEON, Jong-Soo SEO, },
journal={IEICE TRANSACTIONS on Communications},
title={A Study on the Performance of Channel-Mismatched Equalizations in D-TR-STBC-SC Relaying Network},
year={2015},
volume={E98-B},
number={10},
pages={2079-2096},
abstract={In this paper, we study a distributed time-reversal space-time block coded single-carrier (D-TR-STBC-SC) system for amplify-and-forward (AF) half-duplex relaying in frequency-selective Rayleigh fading channels. Under the imperfect channel estimation condition, we analyze the mean-square-error (MSE) performance of the optimal and channel-mismatched frequency domain minimum MSE (FD-MMSE) and least square (LS) equalization. Our analysis results show that, unlike the point-to-point communications, the channel-mismatched FD-MMSE equalization of D-TR-STBC-SC relaying network leads to the ceiling effect that the MSE increases as the signal-to-noise ratio (SNR) of relay-to-destination link increases. Decomposing the MSE, it is found that the primary cause of the ceiling effect is the source-to-destination link in the first time-slot, which makes the covariance matrix of noise vector ill-conditioned. In order to resolve the channel-mismatching problems in the equalization process, we develop optimum relay power control strategies by considering practical channel estimations, i.e., training-based LS and linear minimum MSE (LMMSE) channel estimations. It is shown that the optimum power control resolves the trade-off between MSE performance and relay power consumption, and improves the robustness against the channel-mismatching. Finally, we introduce a performance evaluation to demonstrate the performance of channel equalization combined with the proposed power controls in D-TR-STBC-SC relaying network.},
keywords={},
doi={10.1587/transcom.E98.B.2079},
ISSN={1745-1345},
month={October},}
Copy
TY - JOUR
TI - A Study on the Performance of Channel-Mismatched Equalizations in D-TR-STBC-SC Relaying Network
T2 - IEICE TRANSACTIONS on Communications
SP - 2079
EP - 2096
AU - Jeong-Min CHOI
AU - Robin SHRESTHA
AU - Sungho JEON
AU - Jong-Soo SEO
PY - 2015
DO - 10.1587/transcom.E98.B.2079
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E98-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2015
AB - In this paper, we study a distributed time-reversal space-time block coded single-carrier (D-TR-STBC-SC) system for amplify-and-forward (AF) half-duplex relaying in frequency-selective Rayleigh fading channels. Under the imperfect channel estimation condition, we analyze the mean-square-error (MSE) performance of the optimal and channel-mismatched frequency domain minimum MSE (FD-MMSE) and least square (LS) equalization. Our analysis results show that, unlike the point-to-point communications, the channel-mismatched FD-MMSE equalization of D-TR-STBC-SC relaying network leads to the ceiling effect that the MSE increases as the signal-to-noise ratio (SNR) of relay-to-destination link increases. Decomposing the MSE, it is found that the primary cause of the ceiling effect is the source-to-destination link in the first time-slot, which makes the covariance matrix of noise vector ill-conditioned. In order to resolve the channel-mismatching problems in the equalization process, we develop optimum relay power control strategies by considering practical channel estimations, i.e., training-based LS and linear minimum MSE (LMMSE) channel estimations. It is shown that the optimum power control resolves the trade-off between MSE performance and relay power consumption, and improves the robustness against the channel-mismatching. Finally, we introduce a performance evaluation to demonstrate the performance of channel equalization combined with the proposed power controls in D-TR-STBC-SC relaying network.
ER -