Hiroyuki DEGUCHI Masanori MASUDA Takashi EBISUI Yutaka SHIMAWAKI Nobuharu UKITA Katsunori M. SHIBATA Masato ISHIGURO
A best-fit panel model in the radio holographic metrology taking into account locations and sizes of actual surface panels in a large reflector antenna is presented. A displacement and tilt of each panel can be estimated by introducing the best-fit panel model. It was confirmed by simulations that the distinction can be drawn between a continuous surface error and a discontinuous one. Errors due to truncation of the radiation pattern were calculated by simulations. It was found that a measurement of a 128
The authors propose a multiple shaped beam antenna which uses a single shaped reflector and simple feeds. This new type of multibeam antenna is very attractive for satellite communications and broadcasting because its beam-forming network is much simpler than conventional multibeam reflector antennas which uses cluster feeds. The design method for shaping the reflector surface is described, which is based on the concept of an equivalent array. By using this method, a design example is shown, in which the Japanese main islands are covered with four beams and twofold frequency reuse is operated. Also, the basic performance of this new antenna is clarified numerically.
Takeo ITO Yoshiyuki FUJINO Masaharu FUJITA
A rectenna element applicable to Stratosphere Radio Relay System was proposed and a fundamental microwave power transmission experiment was carried out at 2.45GHz using a rectenna array manufactured based on the proposal. The rectenna element consists of a circular microstrip patch and a rectifying circuit of novel balanced-type design. The circuit allows to mount a rectifier and circuit components just on one side of a substrate without through holes, and hence it must be easy to manufacture a rectenna even having a large aperture. It was verified by a preliminary experiment that the rectifying circuit can provide more than 1 W of DC output power using 8 Shottky diodes as a rectifier with microwave-DC conversion efficiency of 67%. Then, DC output power of 4W was obtained from the 4-element rectenna array in the microwave power transmission experiment carried out in a radio anechoic chamber. The data showed a feasibility of practical application of the microwave power transmission technique.
Masahiro KARIKOMI Tohru MATSUOKA Li Win CHEN
An omnidirectional microstrip antenna using a parasitic cylinder is presented. A rectangular patch is formed on a dielectric substrate and it's completely covered with an aluminum cylinder which is somewhat shorter than a half of free space wavelength. Under such configuration the aluminum cylinder works as a parasitic element. This antenna can provides uniform omnidirectional radiation patterns and a broad frequency bandwidth. In this paper an experimental method for designing such an element is described. Measured input impedance characteristics, current distribution around the surface of the cylinder and patterns are also shown. By properly adjusting the coupling intensity between the patch and the parasitic cylinder a broad bandwidth antenna element can be realized. Some methods to adjust the coupling intensity are shown. A wide bandwidth element up to 14% for VSWR
A theoretical and experimental study of a thin card-sized antenna is presented. The method of moment with a wire-grid model is used to analyze this antenna. In order to validate numerical efficiency, measurements using Wheeler method are preformed on this antenna and its wire-grid models. The experimental and theoretical results are in good agreement if the wire conductivity is well chosen. And the noise reduction of measured Wheeler efficiency using least mean square method is also examined.
Ryo YAMAGUCHI Kunio SAWAYA Yoshiyuki FUJINO Saburo ADACHI
The relation between the radiation pattern and the dimension of the conducting box for a portable telephone is illustrated both theoretically and experimentally. The Galerkin-moment method using the Fourier series expansion for the surface current of the conducting box, which has a great advantage of having a high accuracy, is employed to obtain the radiation pattern. As an example of antennas, a quarter-wavelength monopole antenna having a sinusoidal current distribution is used. As a result, it is pointed out that the radiation pattern of a monopole antenna mounted on the box tends to tilt in a lower direction both in theory and in experiment as well. The relation between the radiation pattern and the location of the monopole antenna is also described. An asymmetrical, or distorted pattern is observed when the monopole antenna moves away from the center of the top plane.
Yasutaka OGAWA Teruaki NAKAJIMA Hiroyoshi YAMADA Kiyohiko ITOH
A new superresolution technique is proposed for antenna pattern measurements. Unwanted reflected signals often impinge on the antenna when we measure it outdoors. A time-domain superresolution technique (a MUSIC algorithm) has been proposed to eliminate the unwanted signal for a narrow pass-band antenna. The MUSIC algorithm needs many snapshots to obtain a correlation matrix. This is not preferable for antenna pattern measurements because it takes a long time to obtain the data. In this paper, we propose to reduce a noise component (stochastic quantity) using the FFT and gating techniques before we apply the MUSIC. The new technique needs a few snapshots and saves the measurement time.
Sailing HE Rasmus HELLBERG Vaughan H. WESTON
The invariant imbedding method combined with the time domain wave splitting technique is applied to the inverse problem for the telegraph equation
Yiwei HE Toru UNO Saburo ADACHI Takunori MASHIKO
A two-dimensional quasi-exact active imaging method for detecting the conducting objects buried in a dielectric half-space is proposed. In this imaging method, an image function which is a projection of buried object to an arbitrary direction, is introduced exactly by taking account of the presence of the planar boundary. The image function is synthesized from the scattering fields which are measured by moving a transmitting antenna (a current source) and a receiving antenna (an observation point) simultaneously along the ground surface. The scattering field is generated by the physical optics current assumed on the surface of buried object. Because the effectiveness of physical optics approximation has been confirmed for this problem, this is a quasi-exact active imaging method. The validity of this imaging method is confirmed by some numerical simulations and an experiment.
Masashi HOTTA Masahiro GESHIRO Shinnosuke SAWA
The beam propagation method (BPM) is a powerful and manageable method for the analysis of wave propagation along weakly guiding optical waveguides. However, the effects of reflected waves are not considered in the original BPM. In this paper, we propose two simple modifications of the BPM to make it relevant in characterizing abrupt discontinuities in weakly guiding waveguides at which a significant amount of reflection is expected to be observed. Validity of the present modifications is confirmed by the numerical results for abrupt discontinuities in step-index slab waveguides and butt-joints between different slab waveguides.
Hiroshi SHIRAI Kazuhiro HIRAYAMA
Electromagnetic plane wave scattering by a wide trough on the ground has been analyzed by high frequency asymptotic techniques based on Geometrical Theory of Diffraction. Field in the trough region has been formulated in terms of parallel plane waveguide modes, whose excitation (coupling) coefficients are obtained by ray-mode conversion techniques. Numerical calculation has been done extensively and thus obtained results are then compared with those by other methods. Good agreements have been observed except for oblique incidence case. It is found that first and secondary modal re-radiation fields from the indented trough region play an important role for scattering far field, and primary edge diffracted field contributes mainly to reflection boundary direction.
Yasuyuki MAEKAWA Nion Sock CHANG Akira MIYAZAKI
Observations of rain depolarization characteristics were conducted using the CS-2 and CS-3 beacon signals (19.45GHz, circular polarization, elevation angle=49.5
Isamu NAGANO Paul A. ROSEN Satoshi YAGITANI Minoru HATA Kazutoshi MIYAMURA Iwane KIMURA
The Akebono satellite observed the Australian Omega signals when it passed about 1000km over the Omega station. In this paper, we compare the observed Omega signal intensities with the values obtained using a full wave calculation and we discuss a mechanism of modulation of the signals. The relative spatial variations of the calculated Omega intensities are quite consistent with those observed, but the absolute calculated intensities themselves are several dB larger than the observed intensities. This difference in intensity may be due to the horizontal inhomogeneity of the D region, which is not modeled in the full wave calculation, or to an incorrect assumption about radiation characteristics of the Omega antenna. It is found that modulation of the observed signals is caused by the interference between the waves with different k vectors.
Mohammed HIMDI Jean-Pierre DANIEL Koichi ITO
Conical beam pattern is well suited for low mobile or maritime mobile antennas used in cheap and low G/T satellite communication system. Various solutions have been already proposed to generate circular polarized conical patterns; some authors use single microstrip patch working on higher order modes [1], [2], while others have built arrays of patches [3]-[5]. The present letter describes the design of an array of slot fed patches with its feed network and the experimental results which have been obtained in S-band.
Li CHEN Toru UNO Saburo ADACHI Raymond J. LUEBBERS
This paper discusses the fully three-dimensional finite difference time domain (FDTD) method to analyze a monopole antenna mounted on a rectangular conducting box covered with a layer of dielectric. The effects of the conductivity and the permittivity of the dielectric layer are investigated. It is shown that all calculation results agree very well with the measured data.
Hideaki WAKABAYASHI Masanobu KOMINAMI Hiroji KUSAKA Hiroshi NAKASHIMA
A full-wave analysis for the scattering problem of infinite periodic arrays on dielectric substrates excited by a circularly-polarized incident wave is presented. The impedance boundary condition is solved by using the moment method in the spectral domain. Numerical results are given and scattering properties are discussed.
By using measured attenuation time-series data over 2 years at 19.5GHz with an integration time of 1 sec, effects of the integration time on attenuation statistics are presented. It is observed that the effect on cumulative distribution of attenuation and the relation between annual and the worst-month cumulative time percentages are not significant for the practical prediction purposes. The effect is significant in attenuation duration statistics.
Gert BRUSSAARD Jaap DIJK Kim LIU Jan DERKSEN
Some results are presented of a one-year measurement period on an INTELSAT down link at Ku band with elevation of 14