Contact surfaces are exposed to the atmosphere in general applications. Therefore, gases in the atmosphere such as oxygen and H2O are adsorbed on and react with the contact surface. Products formed on the surface such as copper oxide films degrade contact resistance characteristics. This surface contamination is an important problem for electrical contact applications. The author has studied the effect of humidification on contact resistance characteristics. In this paper, the effect of humidity on the growth of an oxide film on a copper surface was clarified. An increase in the humidity results in a decrease in the thickness, in contrast, a decrease in the humidity increases the thickness linearly. Changes in the oxide film thickness based on the level of humidity were measured by ellipsometry. Surface state changes influenced by humidification were analyzed topographically using a scanning tunneling microscope. The mechanism of the effect of humidity on the film thickness was discussed on the basis of the deduction of the copper oxide film by H2 from the adsorbed H2O. Moreover, the changes in contact resistance levels for both static and sliding contacts due to humidity were measured, and a dependence on humidity was found.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Terutaka TAMAI, "Effect of Humidity on Growth of Oxide Film on Surface of Copper Contacts" in IEICE TRANSACTIONS on Electronics,
vol. E90-C, no. 7, pp. 1391-1397, July 2007, doi: 10.1093/ietele/e90-c.7.1391.
Abstract: Contact surfaces are exposed to the atmosphere in general applications. Therefore, gases in the atmosphere such as oxygen and H2O are adsorbed on and react with the contact surface. Products formed on the surface such as copper oxide films degrade contact resistance characteristics. This surface contamination is an important problem for electrical contact applications. The author has studied the effect of humidification on contact resistance characteristics. In this paper, the effect of humidity on the growth of an oxide film on a copper surface was clarified. An increase in the humidity results in a decrease in the thickness, in contrast, a decrease in the humidity increases the thickness linearly. Changes in the oxide film thickness based on the level of humidity were measured by ellipsometry. Surface state changes influenced by humidification were analyzed topographically using a scanning tunneling microscope. The mechanism of the effect of humidity on the film thickness was discussed on the basis of the deduction of the copper oxide film by H2 from the adsorbed H2O. Moreover, the changes in contact resistance levels for both static and sliding contacts due to humidity were measured, and a dependence on humidity was found.
URL: https://global.ieice.org/en_transactions/electronics/10.1093/ietele/e90-c.7.1391/_p
Copy
@ARTICLE{e90-c_7_1391,
author={Terutaka TAMAI, },
journal={IEICE TRANSACTIONS on Electronics},
title={Effect of Humidity on Growth of Oxide Film on Surface of Copper Contacts},
year={2007},
volume={E90-C},
number={7},
pages={1391-1397},
abstract={Contact surfaces are exposed to the atmosphere in general applications. Therefore, gases in the atmosphere such as oxygen and H2O are adsorbed on and react with the contact surface. Products formed on the surface such as copper oxide films degrade contact resistance characteristics. This surface contamination is an important problem for electrical contact applications. The author has studied the effect of humidification on contact resistance characteristics. In this paper, the effect of humidity on the growth of an oxide film on a copper surface was clarified. An increase in the humidity results in a decrease in the thickness, in contrast, a decrease in the humidity increases the thickness linearly. Changes in the oxide film thickness based on the level of humidity were measured by ellipsometry. Surface state changes influenced by humidification were analyzed topographically using a scanning tunneling microscope. The mechanism of the effect of humidity on the film thickness was discussed on the basis of the deduction of the copper oxide film by H2 from the adsorbed H2O. Moreover, the changes in contact resistance levels for both static and sliding contacts due to humidity were measured, and a dependence on humidity was found.},
keywords={},
doi={10.1093/ietele/e90-c.7.1391},
ISSN={1745-1353},
month={July},}
Copy
TY - JOUR
TI - Effect of Humidity on Growth of Oxide Film on Surface of Copper Contacts
T2 - IEICE TRANSACTIONS on Electronics
SP - 1391
EP - 1397
AU - Terutaka TAMAI
PY - 2007
DO - 10.1093/ietele/e90-c.7.1391
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E90-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2007
AB - Contact surfaces are exposed to the atmosphere in general applications. Therefore, gases in the atmosphere such as oxygen and H2O are adsorbed on and react with the contact surface. Products formed on the surface such as copper oxide films degrade contact resistance characteristics. This surface contamination is an important problem for electrical contact applications. The author has studied the effect of humidification on contact resistance characteristics. In this paper, the effect of humidity on the growth of an oxide film on a copper surface was clarified. An increase in the humidity results in a decrease in the thickness, in contrast, a decrease in the humidity increases the thickness linearly. Changes in the oxide film thickness based on the level of humidity were measured by ellipsometry. Surface state changes influenced by humidification were analyzed topographically using a scanning tunneling microscope. The mechanism of the effect of humidity on the film thickness was discussed on the basis of the deduction of the copper oxide film by H2 from the adsorbed H2O. Moreover, the changes in contact resistance levels for both static and sliding contacts due to humidity were measured, and a dependence on humidity was found.
ER -