The search functionality is under construction.
The search functionality is under construction.

Design Considerations for Low-Voltage Crystal Oscillator Circuit in a 1.8-V Single Chip Microprocessor

Shigeo KUBOKI, Takehiro OHTA, Junichi KONO, Yoji NISHIO

  • Full Text Views

    0

  • Cite this

Summary :

A low-voltage, high-speed 4-bit CMOS single chip microprocessor, with instruction execution time of 1.0µs at a power supply voltage of 1.8V, has been developed. A single chip processor generally includes crystal oscillation circuits to generate a system clock or a time-base clock. But when the operating voltage is lowered, it becomes difficult to get oscillations to start reliably and to continue stably. This paper describes a low voltage circuit design method for built-in crystal oscillators. Simple design equations for oscillation starting voltage and oscillation starting time are introduced. Then effects of the circuit device parameters, such as power supply voltage, loop gain values, and subthreshold swing S, on the low voltage performance of the crystal oscillators are considered. It is shown that the crystal oscillators operate in a tailing (subthreshold) region at voltages lower than about 1.8 V. Subthreshold swing, threshold voltage, and open loop gain have a significant influence on low voltage oscillation capability. This design method can be applied to crystal oscillators for a wide range of operating voltages.

Publication
IEICE TRANSACTIONS on Electronics Vol.E76-C No.5 pp.701-707
Publication Date
1993/05/25
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Section on Low-Power and Low-Voltage Integrated Circuits)
Category

Authors

Keyword