In microwave hyperthermia for cancer therapy, two power feeding techniques can be utilized: incoherent and coherent operations. In the incoherent operation, not-synchronized microwave power is fed into each array element, whereas the coherent operation is achieved by feeding synchronized microwave to the array elements. The authors have been studying the coaxial-slot antenna for interstitial microwave hyperthermia. The antenna is usually employed as an array applicator inserting several antennas into the tissue to generate large heating area. So far we have examined the control of the heating pattern by feeding techniques in order to obtain more uniform and enlarged heating region. Particularly, `tip-heating,' which means sufficient heating at the area near the tip of the applicator, is significant not to damage surrounding normal tissue in interstitial hyperthermia. In this paper, two feeding techniques are combined and calculated temperature distributions in a hexagonal array applicator are examined by solving Pennes bioheat transfer equation by finite difference method. As a result, in the coherent feeding, large heating area was obtained, while better tip-heating was achieved in the incoherent feeding. Moreover, an instance of sequential combination of two feeding techniques is depicted. In this case, temperature distribution had both characteristics of large heating area and tip-heating, therefore the ability of the control of heating characteristics by sequential combination of the coherent and the incoherent feedings was presented.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Lira HAMADA, Hiroyuki YOSHIMURA, Koichi ITO, "A New Feeding Technique for Temperature Distribution Control in Interstitial Microwave Hyperthermia" in IEICE TRANSACTIONS on Electronics,
vol. E82-C, no. 7, pp. 1318-1323, July 1999, doi: .
Abstract: In microwave hyperthermia for cancer therapy, two power feeding techniques can be utilized: incoherent and coherent operations. In the incoherent operation, not-synchronized microwave power is fed into each array element, whereas the coherent operation is achieved by feeding synchronized microwave to the array elements. The authors have been studying the coaxial-slot antenna for interstitial microwave hyperthermia. The antenna is usually employed as an array applicator inserting several antennas into the tissue to generate large heating area. So far we have examined the control of the heating pattern by feeding techniques in order to obtain more uniform and enlarged heating region. Particularly, `tip-heating,' which means sufficient heating at the area near the tip of the applicator, is significant not to damage surrounding normal tissue in interstitial hyperthermia. In this paper, two feeding techniques are combined and calculated temperature distributions in a hexagonal array applicator are examined by solving Pennes bioheat transfer equation by finite difference method. As a result, in the coherent feeding, large heating area was obtained, while better tip-heating was achieved in the incoherent feeding. Moreover, an instance of sequential combination of two feeding techniques is depicted. In this case, temperature distribution had both characteristics of large heating area and tip-heating, therefore the ability of the control of heating characteristics by sequential combination of the coherent and the incoherent feedings was presented.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e82-c_7_1318/_p
Copy
@ARTICLE{e82-c_7_1318,
author={Lira HAMADA, Hiroyuki YOSHIMURA, Koichi ITO, },
journal={IEICE TRANSACTIONS on Electronics},
title={A New Feeding Technique for Temperature Distribution Control in Interstitial Microwave Hyperthermia},
year={1999},
volume={E82-C},
number={7},
pages={1318-1323},
abstract={In microwave hyperthermia for cancer therapy, two power feeding techniques can be utilized: incoherent and coherent operations. In the incoherent operation, not-synchronized microwave power is fed into each array element, whereas the coherent operation is achieved by feeding synchronized microwave to the array elements. The authors have been studying the coaxial-slot antenna for interstitial microwave hyperthermia. The antenna is usually employed as an array applicator inserting several antennas into the tissue to generate large heating area. So far we have examined the control of the heating pattern by feeding techniques in order to obtain more uniform and enlarged heating region. Particularly, `tip-heating,' which means sufficient heating at the area near the tip of the applicator, is significant not to damage surrounding normal tissue in interstitial hyperthermia. In this paper, two feeding techniques are combined and calculated temperature distributions in a hexagonal array applicator are examined by solving Pennes bioheat transfer equation by finite difference method. As a result, in the coherent feeding, large heating area was obtained, while better tip-heating was achieved in the incoherent feeding. Moreover, an instance of sequential combination of two feeding techniques is depicted. In this case, temperature distribution had both characteristics of large heating area and tip-heating, therefore the ability of the control of heating characteristics by sequential combination of the coherent and the incoherent feedings was presented.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - A New Feeding Technique for Temperature Distribution Control in Interstitial Microwave Hyperthermia
T2 - IEICE TRANSACTIONS on Electronics
SP - 1318
EP - 1323
AU - Lira HAMADA
AU - Hiroyuki YOSHIMURA
AU - Koichi ITO
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E82-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 1999
AB - In microwave hyperthermia for cancer therapy, two power feeding techniques can be utilized: incoherent and coherent operations. In the incoherent operation, not-synchronized microwave power is fed into each array element, whereas the coherent operation is achieved by feeding synchronized microwave to the array elements. The authors have been studying the coaxial-slot antenna for interstitial microwave hyperthermia. The antenna is usually employed as an array applicator inserting several antennas into the tissue to generate large heating area. So far we have examined the control of the heating pattern by feeding techniques in order to obtain more uniform and enlarged heating region. Particularly, `tip-heating,' which means sufficient heating at the area near the tip of the applicator, is significant not to damage surrounding normal tissue in interstitial hyperthermia. In this paper, two feeding techniques are combined and calculated temperature distributions in a hexagonal array applicator are examined by solving Pennes bioheat transfer equation by finite difference method. As a result, in the coherent feeding, large heating area was obtained, while better tip-heating was achieved in the incoherent feeding. Moreover, an instance of sequential combination of two feeding techniques is depicted. In this case, temperature distribution had both characteristics of large heating area and tip-heating, therefore the ability of the control of heating characteristics by sequential combination of the coherent and the incoherent feedings was presented.
ER -