Radio on fiber transmission technique using a conventional intermediate frequency (IF)-band Surface Acoustic Wave (SAW) filter has been proposed in order to satisfy the 3rd Generation Partnership Project (3GPP) specification for International Mobile Telecommunications-2000 (IMT-2000) cellular systems. For the 3GPP specification, a key issue is to expand the dynamic range limited by clipping distortion of laser diode. In order to expand the dynamic range, for the down link, a narrow bandpass SAW filter is introduced after optical transmission, because the SAW filter can suppress the distortion caused by clipping of laser diode and improve the performance of adjacent channel leakage power ratio. For the up link, an optical modulation index (OMI) of a laser diode is optimized to improve the noise figure (NF) performance by controlling the gain of an amplifier between the antenna and the laser diode. As a result, both power control dynamic range of more than 44 dB in the down link and dynamic range of more than 97 dB in the up link were achieved in 6 km optical transmission. Other important parameters, such as Error Vector Magnitude, Reference Sensitivity Level, and so on in the 3GPP specification, were also satisfied.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hiroyuki SASAI, Susumu MORIKURA, "Demonstration of Radio on Fiber Transmission Using Wide Dynamic Range Scheme for IMT-2000 Cellular Systems" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 7, pp. 1153-1158, July 2003, doi: .
Abstract: Radio on fiber transmission technique using a conventional intermediate frequency (IF)-band Surface Acoustic Wave (SAW) filter has been proposed in order to satisfy the 3rd Generation Partnership Project (3GPP) specification for International Mobile Telecommunications-2000 (IMT-2000) cellular systems. For the 3GPP specification, a key issue is to expand the dynamic range limited by clipping distortion of laser diode. In order to expand the dynamic range, for the down link, a narrow bandpass SAW filter is introduced after optical transmission, because the SAW filter can suppress the distortion caused by clipping of laser diode and improve the performance of adjacent channel leakage power ratio. For the up link, an optical modulation index (OMI) of a laser diode is optimized to improve the noise figure (NF) performance by controlling the gain of an amplifier between the antenna and the laser diode. As a result, both power control dynamic range of more than 44 dB in the down link and dynamic range of more than 97 dB in the up link were achieved in 6 km optical transmission. Other important parameters, such as Error Vector Magnitude, Reference Sensitivity Level, and so on in the 3GPP specification, were also satisfied.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e86-c_7_1153/_p
Copy
@ARTICLE{e86-c_7_1153,
author={Hiroyuki SASAI, Susumu MORIKURA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Demonstration of Radio on Fiber Transmission Using Wide Dynamic Range Scheme for IMT-2000 Cellular Systems},
year={2003},
volume={E86-C},
number={7},
pages={1153-1158},
abstract={Radio on fiber transmission technique using a conventional intermediate frequency (IF)-band Surface Acoustic Wave (SAW) filter has been proposed in order to satisfy the 3rd Generation Partnership Project (3GPP) specification for International Mobile Telecommunications-2000 (IMT-2000) cellular systems. For the 3GPP specification, a key issue is to expand the dynamic range limited by clipping distortion of laser diode. In order to expand the dynamic range, for the down link, a narrow bandpass SAW filter is introduced after optical transmission, because the SAW filter can suppress the distortion caused by clipping of laser diode and improve the performance of adjacent channel leakage power ratio. For the up link, an optical modulation index (OMI) of a laser diode is optimized to improve the noise figure (NF) performance by controlling the gain of an amplifier between the antenna and the laser diode. As a result, both power control dynamic range of more than 44 dB in the down link and dynamic range of more than 97 dB in the up link were achieved in 6 km optical transmission. Other important parameters, such as Error Vector Magnitude, Reference Sensitivity Level, and so on in the 3GPP specification, were also satisfied.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Demonstration of Radio on Fiber Transmission Using Wide Dynamic Range Scheme for IMT-2000 Cellular Systems
T2 - IEICE TRANSACTIONS on Electronics
SP - 1153
EP - 1158
AU - Hiroyuki SASAI
AU - Susumu MORIKURA
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 7
JA - IEICE TRANSACTIONS on Electronics
Y1 - July 2003
AB - Radio on fiber transmission technique using a conventional intermediate frequency (IF)-band Surface Acoustic Wave (SAW) filter has been proposed in order to satisfy the 3rd Generation Partnership Project (3GPP) specification for International Mobile Telecommunications-2000 (IMT-2000) cellular systems. For the 3GPP specification, a key issue is to expand the dynamic range limited by clipping distortion of laser diode. In order to expand the dynamic range, for the down link, a narrow bandpass SAW filter is introduced after optical transmission, because the SAW filter can suppress the distortion caused by clipping of laser diode and improve the performance of adjacent channel leakage power ratio. For the up link, an optical modulation index (OMI) of a laser diode is optimized to improve the noise figure (NF) performance by controlling the gain of an amplifier between the antenna and the laser diode. As a result, both power control dynamic range of more than 44 dB in the down link and dynamic range of more than 97 dB in the up link were achieved in 6 km optical transmission. Other important parameters, such as Error Vector Magnitude, Reference Sensitivity Level, and so on in the 3GPP specification, were also satisfied.
ER -