The new hybrid antenna structures having external high-impedance-plane (HIP) shield are proposed. These antennas consist of normal patch or dipole antenna, working as a radiator, and HIP shield working as a reflector. The external HIP shield helps to reduce the undesired backward radiation. Generally, metal shield should be placed a quarter wavelengths apart from the antenna, but HIP shield can be placed close to the antenna and low profile structure can be obtained. In addition, compared with single-layer HIP antennas, having a patch surrounded by HIP structure, these hybrid antennas have the advantage of installation because the shielding effect can be obtained by attaching the external shield under the existing antenna. We fabricated HIP boards and combined with a microstrip patch or a regular dipole. The hybrid patch antenna with HIP shield improves the front-to-back radiation ratio (F/B ratio) similar to the single-layer HIP antenna or the hybrid patch with metal shield. But the dipole antenna with HIP shield, the F/B ratio is worse than the dipole with metal shield. These results indicate the TM mode antenna is suitable for the HIP shield in terms of the F/B ratio improvement.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazuoki MATSUGATANI, Makoto TANAKA, Toshiya SAITO, "Radiation Characteristics of Antenna with External High-Impedance-Plane Shield" in IEICE TRANSACTIONS on Electronics,
vol. E86-C, no. 8, pp. 1542-1549, August 2003, doi: .
Abstract: The new hybrid antenna structures having external high-impedance-plane (HIP) shield are proposed. These antennas consist of normal patch or dipole antenna, working as a radiator, and HIP shield working as a reflector. The external HIP shield helps to reduce the undesired backward radiation. Generally, metal shield should be placed a quarter wavelengths apart from the antenna, but HIP shield can be placed close to the antenna and low profile structure can be obtained. In addition, compared with single-layer HIP antennas, having a patch surrounded by HIP structure, these hybrid antennas have the advantage of installation because the shielding effect can be obtained by attaching the external shield under the existing antenna. We fabricated HIP boards and combined with a microstrip patch or a regular dipole. The hybrid patch antenna with HIP shield improves the front-to-back radiation ratio (F/B ratio) similar to the single-layer HIP antenna or the hybrid patch with metal shield. But the dipole antenna with HIP shield, the F/B ratio is worse than the dipole with metal shield. These results indicate the TM mode antenna is suitable for the HIP shield in terms of the F/B ratio improvement.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/e86-c_8_1542/_p
Copy
@ARTICLE{e86-c_8_1542,
author={Kazuoki MATSUGATANI, Makoto TANAKA, Toshiya SAITO, },
journal={IEICE TRANSACTIONS on Electronics},
title={Radiation Characteristics of Antenna with External High-Impedance-Plane Shield},
year={2003},
volume={E86-C},
number={8},
pages={1542-1549},
abstract={The new hybrid antenna structures having external high-impedance-plane (HIP) shield are proposed. These antennas consist of normal patch or dipole antenna, working as a radiator, and HIP shield working as a reflector. The external HIP shield helps to reduce the undesired backward radiation. Generally, metal shield should be placed a quarter wavelengths apart from the antenna, but HIP shield can be placed close to the antenna and low profile structure can be obtained. In addition, compared with single-layer HIP antennas, having a patch surrounded by HIP structure, these hybrid antennas have the advantage of installation because the shielding effect can be obtained by attaching the external shield under the existing antenna. We fabricated HIP boards and combined with a microstrip patch or a regular dipole. The hybrid patch antenna with HIP shield improves the front-to-back radiation ratio (F/B ratio) similar to the single-layer HIP antenna or the hybrid patch with metal shield. But the dipole antenna with HIP shield, the F/B ratio is worse than the dipole with metal shield. These results indicate the TM mode antenna is suitable for the HIP shield in terms of the F/B ratio improvement.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - Radiation Characteristics of Antenna with External High-Impedance-Plane Shield
T2 - IEICE TRANSACTIONS on Electronics
SP - 1542
EP - 1549
AU - Kazuoki MATSUGATANI
AU - Makoto TANAKA
AU - Toshiya SAITO
PY - 2003
DO -
JO - IEICE TRANSACTIONS on Electronics
SN -
VL - E86-C
IS - 8
JA - IEICE TRANSACTIONS on Electronics
Y1 - August 2003
AB - The new hybrid antenna structures having external high-impedance-plane (HIP) shield are proposed. These antennas consist of normal patch or dipole antenna, working as a radiator, and HIP shield working as a reflector. The external HIP shield helps to reduce the undesired backward radiation. Generally, metal shield should be placed a quarter wavelengths apart from the antenna, but HIP shield can be placed close to the antenna and low profile structure can be obtained. In addition, compared with single-layer HIP antennas, having a patch surrounded by HIP structure, these hybrid antennas have the advantage of installation because the shielding effect can be obtained by attaching the external shield under the existing antenna. We fabricated HIP boards and combined with a microstrip patch or a regular dipole. The hybrid patch antenna with HIP shield improves the front-to-back radiation ratio (F/B ratio) similar to the single-layer HIP antenna or the hybrid patch with metal shield. But the dipole antenna with HIP shield, the F/B ratio is worse than the dipole with metal shield. These results indicate the TM mode antenna is suitable for the HIP shield in terms of the F/B ratio improvement.
ER -