Alumina supported cobalt-ferrum catalysts were prepared using wet impregnation method by applying 3 different conditions, namely hotplate (A), sonication (B) and soaking (C). The alumina supported cobalt-ferrum catalysts were applied in the synthesis of multi-walled carbon nanotubes (MWNTs) using catalytic chemical vapour deposition (CCVD) technique. The morphology and particle size of the cobalt-ferrum catalysts and the MWNTs yield were examined by field emission-scanning electron microscopy (FE-SEM) while the surface elemental composition of the samples was obtained by energy dispersive X-ray analysis (EDX). The morphology of catalysts A, B and C were found to be different, the particle sizes were ranged from 20-40 nm. The diameters of the MWNTs yield from samples A, B and C were found to be related to the catalyst particle size, thus the smaller the catalyst particle, the thinner the MWNTs obtained. The MWNTs with smaller diameter were obtained with higher purity and quality becuase the nanotube surface are free from amorphous carbon. Therefore, different catalyst preparation methods resulted in different sizes of the catalyst particle in order to synthesize MWNTs with desired diameter.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jia Chee TEE, Ahmad Fauzi ISMAIL, Madzlan AZIZ, Tetsuo SOGA, "Influence of Catalyst Preparation on Synthesis of Multi-Walled Carbon Nanotubes" in IEICE TRANSACTIONS on Electronics,
vol. E92-C, no. 12, pp. 1421-1426, December 2009, doi: 10.1587/transele.E92.C.1421.
Abstract: Alumina supported cobalt-ferrum catalysts were prepared using wet impregnation method by applying 3 different conditions, namely hotplate (A), sonication (B) and soaking (C). The alumina supported cobalt-ferrum catalysts were applied in the synthesis of multi-walled carbon nanotubes (MWNTs) using catalytic chemical vapour deposition (CCVD) technique. The morphology and particle size of the cobalt-ferrum catalysts and the MWNTs yield were examined by field emission-scanning electron microscopy (FE-SEM) while the surface elemental composition of the samples was obtained by energy dispersive X-ray analysis (EDX). The morphology of catalysts A, B and C were found to be different, the particle sizes were ranged from 20-40 nm. The diameters of the MWNTs yield from samples A, B and C were found to be related to the catalyst particle size, thus the smaller the catalyst particle, the thinner the MWNTs obtained. The MWNTs with smaller diameter were obtained with higher purity and quality becuase the nanotube surface are free from amorphous carbon. Therefore, different catalyst preparation methods resulted in different sizes of the catalyst particle in order to synthesize MWNTs with desired diameter.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E92.C.1421/_p
Copy
@ARTICLE{e92-c_12_1421,
author={Jia Chee TEE, Ahmad Fauzi ISMAIL, Madzlan AZIZ, Tetsuo SOGA, },
journal={IEICE TRANSACTIONS on Electronics},
title={Influence of Catalyst Preparation on Synthesis of Multi-Walled Carbon Nanotubes},
year={2009},
volume={E92-C},
number={12},
pages={1421-1426},
abstract={Alumina supported cobalt-ferrum catalysts were prepared using wet impregnation method by applying 3 different conditions, namely hotplate (A), sonication (B) and soaking (C). The alumina supported cobalt-ferrum catalysts were applied in the synthesis of multi-walled carbon nanotubes (MWNTs) using catalytic chemical vapour deposition (CCVD) technique. The morphology and particle size of the cobalt-ferrum catalysts and the MWNTs yield were examined by field emission-scanning electron microscopy (FE-SEM) while the surface elemental composition of the samples was obtained by energy dispersive X-ray analysis (EDX). The morphology of catalysts A, B and C were found to be different, the particle sizes were ranged from 20-40 nm. The diameters of the MWNTs yield from samples A, B and C were found to be related to the catalyst particle size, thus the smaller the catalyst particle, the thinner the MWNTs obtained. The MWNTs with smaller diameter were obtained with higher purity and quality becuase the nanotube surface are free from amorphous carbon. Therefore, different catalyst preparation methods resulted in different sizes of the catalyst particle in order to synthesize MWNTs with desired diameter.},
keywords={},
doi={10.1587/transele.E92.C.1421},
ISSN={1745-1353},
month={December},}
Copy
TY - JOUR
TI - Influence of Catalyst Preparation on Synthesis of Multi-Walled Carbon Nanotubes
T2 - IEICE TRANSACTIONS on Electronics
SP - 1421
EP - 1426
AU - Jia Chee TEE
AU - Ahmad Fauzi ISMAIL
AU - Madzlan AZIZ
AU - Tetsuo SOGA
PY - 2009
DO - 10.1587/transele.E92.C.1421
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E92-C
IS - 12
JA - IEICE TRANSACTIONS on Electronics
Y1 - December 2009
AB - Alumina supported cobalt-ferrum catalysts were prepared using wet impregnation method by applying 3 different conditions, namely hotplate (A), sonication (B) and soaking (C). The alumina supported cobalt-ferrum catalysts were applied in the synthesis of multi-walled carbon nanotubes (MWNTs) using catalytic chemical vapour deposition (CCVD) technique. The morphology and particle size of the cobalt-ferrum catalysts and the MWNTs yield were examined by field emission-scanning electron microscopy (FE-SEM) while the surface elemental composition of the samples was obtained by energy dispersive X-ray analysis (EDX). The morphology of catalysts A, B and C were found to be different, the particle sizes were ranged from 20-40 nm. The diameters of the MWNTs yield from samples A, B and C were found to be related to the catalyst particle size, thus the smaller the catalyst particle, the thinner the MWNTs obtained. The MWNTs with smaller diameter were obtained with higher purity and quality becuase the nanotube surface are free from amorphous carbon. Therefore, different catalyst preparation methods resulted in different sizes of the catalyst particle in order to synthesize MWNTs with desired diameter.
ER -