This paper presents various types of iterative progressive numerical methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects and reports comparatively the performance of these methods. The original IPNM is similar to the Jacobi method which is one of the classical linear iterative solvers. Then the modified IPNMs are based on other classical solvers like the Gauss-Seidel (GS), the relaxed Jacobi, the successive overrelaxation (SOR), and the symmetric SOR (SSOR) methods. In the original and modified IPNMs, we repeatedly solve linear systems of equations by using a nonstationary iterative solver. An initial guess and a stopping criterion are discussed in order to realize a fast computation. We treat EM wave scattering from 27 perfectly electric conducting (PEC) spheres and evaluate the performance of the IPNMs. However, the SOR- and SSOR-type IPNMs are not subject to the above numerical test in this paper because an optimal relaxation parameter is not possible to determine in advance. The evaluation reveals that the IPNMs converge much faster than a standard BEM computation. The relaxed Jacobi-type IPNM is better than the other types in terms of the net computation time and the application range for the distance between objects.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Norimasa NAKASHIMA, Mitsuo TATEIBA, "A Comparative Study on Iterative Progressive Numerical Methods for Boundary Element Analysis of Electromagnetic Multiple Scattering" in IEICE TRANSACTIONS on Electronics,
vol. E94-C, no. 5, pp. 865-873, May 2011, doi: 10.1587/transele.E94.C.865.
Abstract: This paper presents various types of iterative progressive numerical methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects and reports comparatively the performance of these methods. The original IPNM is similar to the Jacobi method which is one of the classical linear iterative solvers. Then the modified IPNMs are based on other classical solvers like the Gauss-Seidel (GS), the relaxed Jacobi, the successive overrelaxation (SOR), and the symmetric SOR (SSOR) methods. In the original and modified IPNMs, we repeatedly solve linear systems of equations by using a nonstationary iterative solver. An initial guess and a stopping criterion are discussed in order to realize a fast computation. We treat EM wave scattering from 27 perfectly electric conducting (PEC) spheres and evaluate the performance of the IPNMs. However, the SOR- and SSOR-type IPNMs are not subject to the above numerical test in this paper because an optimal relaxation parameter is not possible to determine in advance. The evaluation reveals that the IPNMs converge much faster than a standard BEM computation. The relaxed Jacobi-type IPNM is better than the other types in terms of the net computation time and the application range for the distance between objects.
URL: https://global.ieice.org/en_transactions/electronics/10.1587/transele.E94.C.865/_p
Copy
@ARTICLE{e94-c_5_865,
author={Norimasa NAKASHIMA, Mitsuo TATEIBA, },
journal={IEICE TRANSACTIONS on Electronics},
title={A Comparative Study on Iterative Progressive Numerical Methods for Boundary Element Analysis of Electromagnetic Multiple Scattering},
year={2011},
volume={E94-C},
number={5},
pages={865-873},
abstract={This paper presents various types of iterative progressive numerical methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects and reports comparatively the performance of these methods. The original IPNM is similar to the Jacobi method which is one of the classical linear iterative solvers. Then the modified IPNMs are based on other classical solvers like the Gauss-Seidel (GS), the relaxed Jacobi, the successive overrelaxation (SOR), and the symmetric SOR (SSOR) methods. In the original and modified IPNMs, we repeatedly solve linear systems of equations by using a nonstationary iterative solver. An initial guess and a stopping criterion are discussed in order to realize a fast computation. We treat EM wave scattering from 27 perfectly electric conducting (PEC) spheres and evaluate the performance of the IPNMs. However, the SOR- and SSOR-type IPNMs are not subject to the above numerical test in this paper because an optimal relaxation parameter is not possible to determine in advance. The evaluation reveals that the IPNMs converge much faster than a standard BEM computation. The relaxed Jacobi-type IPNM is better than the other types in terms of the net computation time and the application range for the distance between objects.},
keywords={},
doi={10.1587/transele.E94.C.865},
ISSN={1745-1353},
month={May},}
Copy
TY - JOUR
TI - A Comparative Study on Iterative Progressive Numerical Methods for Boundary Element Analysis of Electromagnetic Multiple Scattering
T2 - IEICE TRANSACTIONS on Electronics
SP - 865
EP - 873
AU - Norimasa NAKASHIMA
AU - Mitsuo TATEIBA
PY - 2011
DO - 10.1587/transele.E94.C.865
JO - IEICE TRANSACTIONS on Electronics
SN - 1745-1353
VL - E94-C
IS - 5
JA - IEICE TRANSACTIONS on Electronics
Y1 - May 2011
AB - This paper presents various types of iterative progressive numerical methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects and reports comparatively the performance of these methods. The original IPNM is similar to the Jacobi method which is one of the classical linear iterative solvers. Then the modified IPNMs are based on other classical solvers like the Gauss-Seidel (GS), the relaxed Jacobi, the successive overrelaxation (SOR), and the symmetric SOR (SSOR) methods. In the original and modified IPNMs, we repeatedly solve linear systems of equations by using a nonstationary iterative solver. An initial guess and a stopping criterion are discussed in order to realize a fast computation. We treat EM wave scattering from 27 perfectly electric conducting (PEC) spheres and evaluate the performance of the IPNMs. However, the SOR- and SSOR-type IPNMs are not subject to the above numerical test in this paper because an optimal relaxation parameter is not possible to determine in advance. The evaluation reveals that the IPNMs converge much faster than a standard BEM computation. The relaxed Jacobi-type IPNM is better than the other types in terms of the net computation time and the application range for the distance between objects.
ER -