The search functionality is under construction.
The search functionality is under construction.

A Semidefinite Programming Relaxation for the Generalized Stable Set Problem

Tetsuya FUJIE, Akihisa TAMURA

  • Full Text Views

    0

  • Cite this

Summary :

In this paper, we generalize the theory of a convex set relaxation for the maximum weight stable set problem due to Grotschel, Lovasz and Schrijver to the generalized stable set problem. We define a convex set which serves as a relaxation problem, and show that optimizing a linear function over the set can be done in polynomial time. This implies that the generalized stable set problem for perfect bidirected graphs is polynomial time solvable. Moreover, we prove that the convex set is a polytope if and only if the corresponding bidirected graph is perfect. The definition of the convex set is based on a semidefinite programming relaxation of Lovasz and Schrijver for the maximum weight stable set problem, and the equivalent representation using infinitely many convex quadratic inequalities proposed by Fujie and Kojima is particularly important for our proof.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E88-A No.5 pp.1122-1128
Publication Date
2005/05/01
Publicized
Online ISSN
DOI
10.1093/ietfec/e88-a.5.1122
Type of Manuscript
Special Section PAPER (Special Section on Discrete Mathematics and Its Applications)
Category

Authors

Keyword