The (k + δ)-edge-connectivity augmentation problem for a specified set of vertices ((k + δ)ECA-SV) is defined as follows: "Given an undirected graph G =(V,E), a specified set of vertices Γ
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Toshiya MASHIMA, Satoshi TAOKA, Toshimasa WATANABE, "A 2-Approximation Algorithm to (k + 1)-Edge-Connect a Specified Set of Vertices in a k-Edge-Connected Graph" in IEICE TRANSACTIONS on Fundamentals,
vol. E88-A, no. 5, pp. 1290-1300, May 2005, doi: 10.1093/ietfec/e88-a.5.1290.
Abstract: The (k + δ)-edge-connectivity augmentation problem for a specified set of vertices ((k + δ)ECA-SV) is defined as follows: "Given an undirected graph G =(V,E), a specified set of vertices Γ
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e88-a.5.1290/_p
Copy
@ARTICLE{e88-a_5_1290,
author={Toshiya MASHIMA, Satoshi TAOKA, Toshimasa WATANABE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A 2-Approximation Algorithm to (k + 1)-Edge-Connect a Specified Set of Vertices in a k-Edge-Connected Graph},
year={2005},
volume={E88-A},
number={5},
pages={1290-1300},
abstract={The (k + δ)-edge-connectivity augmentation problem for a specified set of vertices ((k + δ)ECA-SV) is defined as follows: "Given an undirected graph G =(V,E), a specified set of vertices Γ
keywords={},
doi={10.1093/ietfec/e88-a.5.1290},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - A 2-Approximation Algorithm to (k + 1)-Edge-Connect a Specified Set of Vertices in a k-Edge-Connected Graph
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1290
EP - 1300
AU - Toshiya MASHIMA
AU - Satoshi TAOKA
AU - Toshimasa WATANABE
PY - 2005
DO - 10.1093/ietfec/e88-a.5.1290
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E88-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2005
AB - The (k + δ)-edge-connectivity augmentation problem for a specified set of vertices ((k + δ)ECA-SV) is defined as follows: "Given an undirected graph G =(V,E), a specified set of vertices Γ
ER -