Let Ni be the number of connected spanning subgraphs with i(n-1
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Peng CHENG, Shigeru MASUYAMA, "Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn" in IEICE TRANSACTIONS on Fundamentals,
vol. E91-A, no. 9, pp. 2314-2321, September 2008, doi: 10.1093/ietfec/e91-a.9.2314.
Abstract: Let Ni be the number of connected spanning subgraphs with i(n-1
URL: https://global.ieice.org/en_transactions/fundamentals/10.1093/ietfec/e91-a.9.2314/_p
Copy
@ARTICLE{e91-a_9_2314,
author={Peng CHENG, Shigeru MASUYAMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn},
year={2008},
volume={E91-A},
number={9},
pages={2314-2321},
abstract={Let Ni be the number of connected spanning subgraphs with i(n-1
keywords={},
doi={10.1093/ietfec/e91-a.9.2314},
ISSN={1745-1337},
month={September},}
Copy
TY - JOUR
TI - Formulas for Counting the Numbers of Connected Spanning Subgraphs with at Most n+1 Edges in a Complete Graph Kn
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2314
EP - 2321
AU - Peng CHENG
AU - Shigeru MASUYAMA
PY - 2008
DO - 10.1093/ietfec/e91-a.9.2314
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E91-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2008
AB - Let Ni be the number of connected spanning subgraphs with i(n-1
ER -