We give an explicit formula for the number of n-variable clique function in terms of the parameters based upon the numbers of intersecting antichains of the lower half of the n-cube. We present the numbers of clique functions with up to seven variables through computer evaluation of the parameters.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Grant POGOSYAN, Masahiro MIYAKAWA, Akihiro NOZAKI, Ivo G. ROSENBERG, "The Number of Clique Boolean Functions" in IEICE TRANSACTIONS on Fundamentals,
vol. E80-A, no. 8, pp. 1502-1507, August 1997, doi: .
Abstract: We give an explicit formula for the number of n-variable clique function in terms of the parameters based upon the numbers of intersecting antichains of the lower half of the n-cube. We present the numbers of clique functions with up to seven variables through computer evaluation of the parameters.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e80-a_8_1502/_p
Copy
@ARTICLE{e80-a_8_1502,
author={Grant POGOSYAN, Masahiro MIYAKAWA, Akihiro NOZAKI, Ivo G. ROSENBERG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={The Number of Clique Boolean Functions},
year={1997},
volume={E80-A},
number={8},
pages={1502-1507},
abstract={We give an explicit formula for the number of n-variable clique function in terms of the parameters based upon the numbers of intersecting antichains of the lower half of the n-cube. We present the numbers of clique functions with up to seven variables through computer evaluation of the parameters.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - The Number of Clique Boolean Functions
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1502
EP - 1507
AU - Grant POGOSYAN
AU - Masahiro MIYAKAWA
AU - Akihiro NOZAKI
AU - Ivo G. ROSENBERG
PY - 1997
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E80-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 1997
AB - We give an explicit formula for the number of n-variable clique function in terms of the parameters based upon the numbers of intersecting antichains of the lower half of the n-cube. We present the numbers of clique functions with up to seven variables through computer evaluation of the parameters.
ER -