The search functionality is under construction.
The search functionality is under construction.

Novel First Order Optimization Classification Framework

Peter GECZY, Shiro USUI

  • Full Text Views

    0

  • Cite this

Summary :

Numerous scientific and engineering fields extensively utilize optimization techniques for finding appropriate parameter values of models. Various optimization methods are available for practical use. The optimization algorithms are classified primarily due to the rates of convergence. Unfortunately, it is often the case in practice that the particular optimization method with specified convergence rates performs substantially differently on diverse optimization tasks. Theoretical classification of convergence rates then lacks its relevance in the context of the practical optimization. It is therefore desirable to formulate a novel classification framework relevant to the theoretical concept of convergence rates as well as to the practical optimization. This article introduces such classification framework. The proposed classification framework enables specification of optimization techniques and optimization tasks. It also underlies its inherent relationship to the convergence rates. Novel classification framework is applied to categorizing the tasks of optimizing polynomials and the problem of training multilayer perceptron neural networks.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E83-A No.11 pp.2312-2319
Publication Date
2000/11/25
Publicized
Online ISSN
DOI
Type of Manuscript
PAPER
Category
Numerical Analysis and Optimization

Authors

Keyword