The search functionality is under construction.

The search functionality is under construction.

A broadcast distribution system (BDS) is a system for the distribution of digital contents over broadcast channel where the data supplier broadcasts the contents in encrypted form and gives each subscriber a decoder containing a secret decryption key. A traitor is a subscriber who offers the information which allows to decrypt the broadcast. When a pirate decoder is captured, if at least one traitor can be identified from it, a BDS is said to be traitor-tracing. If the data supplier can prevent subscribers from obtaining the contents without recalling their decoders, a BDS is said to be subscriber-excluding. In this paper, we propose an efficient BDS which is both subscriber-excluding and traitor-tracing. We use similar mathematics to a threshold cryptosystem. In the proposed BDS, the maximum number of excluded subscribers reaches the maximum number of traitors in a coalition for which at least one traitor can be identified. We prove that the proposed BDS is secure against ciphertext-only attack if and only if ElGamal cryptosystem is secure against the attack and the discrete logarithm problem is hard. The proposed BDS is the first one which satisfies all the following features: Both subscriber-excluding and traitor-tracing, identifying all the traitors, black box tracing and public key system.

- Publication
- IEICE TRANSACTIONS on Fundamentals Vol.E84-A No.1 pp.247-255

- Publication Date
- 2001/01/01

- Publicized

- Online ISSN

- DOI

- Type of Manuscript
- Special Section PAPER (Special Section on Cryptography and Information Security)

- Category

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Maki YOSHIDA, Toru FUJIWARA, "A Subscriber-Excluding and Traitor-Tracing Broadcast Distribution System" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 1, pp. 247-255, January 2001, doi: .

Abstract: A broadcast distribution system (BDS) is a system for the distribution of digital contents over broadcast channel where the data supplier broadcasts the contents in encrypted form and gives each subscriber a decoder containing a secret decryption key. A traitor is a subscriber who offers the information which allows to decrypt the broadcast. When a pirate decoder is captured, if at least one traitor can be identified from it, a BDS is said to be traitor-tracing. If the data supplier can prevent subscribers from obtaining the contents without recalling their decoders, a BDS is said to be subscriber-excluding. In this paper, we propose an efficient BDS which is both subscriber-excluding and traitor-tracing. We use similar mathematics to a threshold cryptosystem. In the proposed BDS, the maximum number of excluded subscribers reaches the maximum number of traitors in a coalition for which at least one traitor can be identified. We prove that the proposed BDS is secure against ciphertext-only attack if and only if ElGamal cryptosystem is secure against the attack and the discrete logarithm problem is hard. The proposed BDS is the first one which satisfies all the following features: Both subscriber-excluding and traitor-tracing, identifying all the traitors, black box tracing and public key system.

URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_1_247/_p

Copy

@ARTICLE{e84-a_1_247,

author={Maki YOSHIDA, Toru FUJIWARA, },

journal={IEICE TRANSACTIONS on Fundamentals},

title={A Subscriber-Excluding and Traitor-Tracing Broadcast Distribution System},

year={2001},

volume={E84-A},

number={1},

pages={247-255},

abstract={A broadcast distribution system (BDS) is a system for the distribution of digital contents over broadcast channel where the data supplier broadcasts the contents in encrypted form and gives each subscriber a decoder containing a secret decryption key. A traitor is a subscriber who offers the information which allows to decrypt the broadcast. When a pirate decoder is captured, if at least one traitor can be identified from it, a BDS is said to be traitor-tracing. If the data supplier can prevent subscribers from obtaining the contents without recalling their decoders, a BDS is said to be subscriber-excluding. In this paper, we propose an efficient BDS which is both subscriber-excluding and traitor-tracing. We use similar mathematics to a threshold cryptosystem. In the proposed BDS, the maximum number of excluded subscribers reaches the maximum number of traitors in a coalition for which at least one traitor can be identified. We prove that the proposed BDS is secure against ciphertext-only attack if and only if ElGamal cryptosystem is secure against the attack and the discrete logarithm problem is hard. The proposed BDS is the first one which satisfies all the following features: Both subscriber-excluding and traitor-tracing, identifying all the traitors, black box tracing and public key system.},

keywords={},

doi={},

ISSN={},

month={January},}

Copy

TY - JOUR

TI - A Subscriber-Excluding and Traitor-Tracing Broadcast Distribution System

T2 - IEICE TRANSACTIONS on Fundamentals

SP - 247

EP - 255

AU - Maki YOSHIDA

AU - Toru FUJIWARA

PY - 2001

DO -

JO - IEICE TRANSACTIONS on Fundamentals

SN -

VL - E84-A

IS - 1

JA - IEICE TRANSACTIONS on Fundamentals

Y1 - January 2001

AB - A broadcast distribution system (BDS) is a system for the distribution of digital contents over broadcast channel where the data supplier broadcasts the contents in encrypted form and gives each subscriber a decoder containing a secret decryption key. A traitor is a subscriber who offers the information which allows to decrypt the broadcast. When a pirate decoder is captured, if at least one traitor can be identified from it, a BDS is said to be traitor-tracing. If the data supplier can prevent subscribers from obtaining the contents without recalling their decoders, a BDS is said to be subscriber-excluding. In this paper, we propose an efficient BDS which is both subscriber-excluding and traitor-tracing. We use similar mathematics to a threshold cryptosystem. In the proposed BDS, the maximum number of excluded subscribers reaches the maximum number of traitors in a coalition for which at least one traitor can be identified. We prove that the proposed BDS is secure against ciphertext-only attack if and only if ElGamal cryptosystem is secure against the attack and the discrete logarithm problem is hard. The proposed BDS is the first one which satisfies all the following features: Both subscriber-excluding and traitor-tracing, identifying all the traitors, black box tracing and public key system.

ER -