The search functionality is under construction.
The search functionality is under construction.

Polynomially Fast Parallel Algorithms for Some P-Complete Problems

Carla Denise CASTANHO, Wei CHEN, Koichi WADA, Akihiro FUJIWARA

  • Full Text Views

    0

  • Cite this

Summary :

P-complete problems seem to have no parallel algorithm which runs in polylogarithmic time using a polynomial number of processors. A P-complete problem is in the class EP (Efficient and Polynomially fast) if and only if there exists a cost optimal algorithm to solve it in T(n) = O(t(n)ε) (ε < 1) using P(n) processors such that T(n) P(n) = O(t(n)), where t(n) is the time complexity of the fastest sequential algorithm which solves the problem. The goal of our research is to find EP parallel algorithms for some P-complete problems. In this paper first we consider the convex layers problem. We give an algorithm for computing the convex layers of a set S of n points in the plane. Let k be the number of the convex layers of S. When 1 k nε/2 (0 ε < 1) our algorithm runs in O((n log n)/p) time using p processors, where 1 p n1-ε/2, and it is cost optimal. Next, we consider the envelope layers problem of a set S of n line segments in the plane. Let k be the number of the envelope layers of S. When 1 k nε/2 (0 ε < 1), we propose an algorithm for computing the envelope layers of S in O((n α(n) log3 n)/p) time using p processors, where 1 p n1-ε/2, and α(n) is the functional inverse of Ackermann's function which grows extremely slowly. The computational model we use in this paper is the CREW-PRAM. Our first algorithm, for the convex layers problem, belongs to EP, and the second one, for the envelope layers problem, belongs to the class EP if a small factor of log n is ignored.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E84-A No.5 pp.1244-1255
Publication Date
2001/05/01
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Section on Discrete Mathematics and Its Applications)
Category

Authors

Keyword