This paper proposes a multipath interference canceller (MPIC) for orthogonal code multiplexed channels in the W-CDMA forward link and evaluates by computer simulation the improvement in BER performance owing to the multipath interference (MPI) suppression effect obtained by the MPIC. The simulation results show that a one-stage MPIC, which removes the MPI from the common pilot channel (PICH), common control channel (CCH), and synchronization channel (SCH), achieves a sufficient MPI suppression effect, and that the required received Eb/N0 of the traffic channel (TCH) at the average BER of 10-3 using the MPIC for the common channels is decreased by approximately 6.5 dB compared to that with a matched filter (MF)-based Rake receiver (the transmit power ratio of each common channel to TCH: ΔPICH/TCH=0 dB, ΔCCH/TCH=5 dB, ΔSCH/TCH=3 dB, without fast transmit power control (TPC) and antenna diversity reception). We also show that by using MPIC, the required transmit Eb/N0 at the average BER of 10-3, when the ratio of the target Eb/I0 of the 9-interfering users to desired user is ΔInt/Des=6 dB with fast TPC, is increased by only approximately 0.6 dB compared to that when ΔInt/Des=0 dB. This implies that the preferential MPI suppression from high-rate TCHs that abates the increase in complexity in a mobile terminal is effective in increasing the link capacity in the forward link.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Akhmad Unggul PRIANTORO, Heiichi YAMAMOTO, Kenichi HIGUCHI, Mamoru SAWAHASHI, "Multipath Interference Canceller for Orthogonal Code-Multiplexed Channels and Its Performance in W-CDMA Forward Link" in IEICE TRANSACTIONS on Fundamentals,
vol. E85-A, no. 7, pp. 1524-1535, July 2002, doi: .
Abstract: This paper proposes a multipath interference canceller (MPIC) for orthogonal code multiplexed channels in the W-CDMA forward link and evaluates by computer simulation the improvement in BER performance owing to the multipath interference (MPI) suppression effect obtained by the MPIC. The simulation results show that a one-stage MPIC, which removes the MPI from the common pilot channel (PICH), common control channel (CCH), and synchronization channel (SCH), achieves a sufficient MPI suppression effect, and that the required received Eb/N0 of the traffic channel (TCH) at the average BER of 10-3 using the MPIC for the common channels is decreased by approximately 6.5 dB compared to that with a matched filter (MF)-based Rake receiver (the transmit power ratio of each common channel to TCH: ΔPICH/TCH=0 dB, ΔCCH/TCH=5 dB, ΔSCH/TCH=3 dB, without fast transmit power control (TPC) and antenna diversity reception). We also show that by using MPIC, the required transmit Eb/N0 at the average BER of 10-3, when the ratio of the target Eb/I0 of the 9-interfering users to desired user is ΔInt/Des=6 dB with fast TPC, is increased by only approximately 0.6 dB compared to that when ΔInt/Des=0 dB. This implies that the preferential MPI suppression from high-rate TCHs that abates the increase in complexity in a mobile terminal is effective in increasing the link capacity in the forward link.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e85-a_7_1524/_p
Copy
@ARTICLE{e85-a_7_1524,
author={Akhmad Unggul PRIANTORO, Heiichi YAMAMOTO, Kenichi HIGUCHI, Mamoru SAWAHASHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Multipath Interference Canceller for Orthogonal Code-Multiplexed Channels and Its Performance in W-CDMA Forward Link},
year={2002},
volume={E85-A},
number={7},
pages={1524-1535},
abstract={This paper proposes a multipath interference canceller (MPIC) for orthogonal code multiplexed channels in the W-CDMA forward link and evaluates by computer simulation the improvement in BER performance owing to the multipath interference (MPI) suppression effect obtained by the MPIC. The simulation results show that a one-stage MPIC, which removes the MPI from the common pilot channel (PICH), common control channel (CCH), and synchronization channel (SCH), achieves a sufficient MPI suppression effect, and that the required received Eb/N0 of the traffic channel (TCH) at the average BER of 10-3 using the MPIC for the common channels is decreased by approximately 6.5 dB compared to that with a matched filter (MF)-based Rake receiver (the transmit power ratio of each common channel to TCH: ΔPICH/TCH=0 dB, ΔCCH/TCH=5 dB, ΔSCH/TCH=3 dB, without fast transmit power control (TPC) and antenna diversity reception). We also show that by using MPIC, the required transmit Eb/N0 at the average BER of 10-3, when the ratio of the target Eb/I0 of the 9-interfering users to desired user is ΔInt/Des=6 dB with fast TPC, is increased by only approximately 0.6 dB compared to that when ΔInt/Des=0 dB. This implies that the preferential MPI suppression from high-rate TCHs that abates the increase in complexity in a mobile terminal is effective in increasing the link capacity in the forward link.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Multipath Interference Canceller for Orthogonal Code-Multiplexed Channels and Its Performance in W-CDMA Forward Link
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1524
EP - 1535
AU - Akhmad Unggul PRIANTORO
AU - Heiichi YAMAMOTO
AU - Kenichi HIGUCHI
AU - Mamoru SAWAHASHI
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E85-A
IS - 7
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - July 2002
AB - This paper proposes a multipath interference canceller (MPIC) for orthogonal code multiplexed channels in the W-CDMA forward link and evaluates by computer simulation the improvement in BER performance owing to the multipath interference (MPI) suppression effect obtained by the MPIC. The simulation results show that a one-stage MPIC, which removes the MPI from the common pilot channel (PICH), common control channel (CCH), and synchronization channel (SCH), achieves a sufficient MPI suppression effect, and that the required received Eb/N0 of the traffic channel (TCH) at the average BER of 10-3 using the MPIC for the common channels is decreased by approximately 6.5 dB compared to that with a matched filter (MF)-based Rake receiver (the transmit power ratio of each common channel to TCH: ΔPICH/TCH=0 dB, ΔCCH/TCH=5 dB, ΔSCH/TCH=3 dB, without fast transmit power control (TPC) and antenna diversity reception). We also show that by using MPIC, the required transmit Eb/N0 at the average BER of 10-3, when the ratio of the target Eb/I0 of the 9-interfering users to desired user is ΔInt/Des=6 dB with fast TPC, is increased by only approximately 0.6 dB compared to that when ΔInt/Des=0 dB. This implies that the preferential MPI suppression from high-rate TCHs that abates the increase in complexity in a mobile terminal is effective in increasing the link capacity in the forward link.
ER -