Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.
Ren ISHIBASHI
Ibaraki University
Kazuki YONEYAMA
Ibaraki University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Ren ISHIBASHI, Kazuki YONEYAMA, "Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles" in IEICE TRANSACTIONS on Fundamentals,
vol. E106-A, no. 9, pp. 1141-1163, September 2023, doi: 10.1587/transfun.2022DMP0001.
Abstract: Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2022DMP0001/_p
Copy
@ARTICLE{e106-a_9_1141,
author={Ren ISHIBASHI, Kazuki YONEYAMA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles},
year={2023},
volume={E106-A},
number={9},
pages={1141-1163},
abstract={Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.},
keywords={},
doi={10.1587/transfun.2022DMP0001},
ISSN={1745-1337},
month={September},}
Copy
TY - JOUR
TI - Post-Quantum Anonymous One-Sided Authenticated Key Exchange without Random Oracles
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1141
EP - 1163
AU - Ren ISHIBASHI
AU - Kazuki YONEYAMA
PY - 2023
DO - 10.1587/transfun.2022DMP0001
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E106-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2023
AB - Authenticated Key Exchange (AKE) is a cryptographic protocol to share a common session key among multiple parties. Usually, PKI-based AKE schemes are designed to guarantee secrecy of the session key and mutual authentication. However, in practice, there are many cases where mutual authentication is undesirable such as in anonymous networks like Tor and Riffle, or difficult to achieve due to the certificate management at the user level such as the Internet. Goldberg et al. formulated a model of anonymous one-sided AKE which guarantees the anonymity of the client by allowing only the client to authenticate the server, and proposed a concrete scheme. However, existing anonymous one-sided AKE schemes are only known to be secure in the random oracle model. In this paper, we propose generic constructions of anonymous one-sided AKE in the random oracle model and in the standard model, respectively. Our constructions allow us to construct the first post-quantum anonymous one-sided AKE scheme from isogenies in the standard model.
ER -