In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.
Kota HISAFURU
Waseda University
Kazunari TAKASAKI
Waseda University
Nozomu TOGAWA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kota HISAFURU, Kazunari TAKASAKI, Nozomu TOGAWA, "An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 1, pp. 75-86, January 2024, doi: 10.1587/transfun.2023KEP0012.
Abstract: In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023KEP0012/_p
Copy
@ARTICLE{e107-a_1_75,
author={Kota HISAFURU, Kazunari TAKASAKI, Nozomu TOGAWA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes},
year={2024},
volume={E107-A},
number={1},
pages={75-86},
abstract={In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.},
keywords={},
doi={10.1587/transfun.2023KEP0012},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - An Anomalous Behavior Detection Method Utilizing IoT Power Waveform Shapes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 75
EP - 86
AU - Kota HISAFURU
AU - Kazunari TAKASAKI
AU - Nozomu TOGAWA
PY - 2024
DO - 10.1587/transfun.2023KEP0012
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2024
AB - In recent years, with the wide spread of the Internet of Things (IoT) devices, security issues for hardware devices have been increasing, where detecting their anomalous behaviors becomes quite important. One of the effective methods for detecting anomalous behaviors of IoT devices is to utilize consumed energy and operation duration time extracted from their power waveforms. However, the existing methods do not consider the shape of time-series data and cannot distinguish between power waveforms with similar consumed energy and duration time but different shapes. In this paper, we propose a method for detecting anomalous behaviors based on the shape of time-series data by incorporating a shape-based distance (SBD) measure. The proposed method first obtains the entire power waveform of the target IoT device and extracts several application power waveforms. After that, we give the invariances to them, and we can effectively obtain the SBD between every two application power waveforms. Based on the SBD values, the local outlier factor (LOF) method can finally distinguish between normal application behaviors and anomalous application behaviors. Experimental results demonstrate that the proposed method successfully detects anomalous application behaviors, while the existing state-of-the-art method fails to detect them.
ER -