High Efficiency Video Coding (HEVC/H.265) obtains 50% bit rate reduction than H.264/AVC standard with comparable quality at the cost of high computational complexity. Merge mode is one of the most important new features introduced in HEVC's inter prediction. Merge mode and traditional inter mode consume about 90% of the total encoding time. To address this high complexity, this paper utilizes the merge mode to accelerate inter prediction by four strategies. 1) A merge candidate decision is proposed by the sum of absolute transformed difference (SATD) cost. 2) An early merge termination is presented with more than 90% accuracy. 3) Due to the compensation effect of merge candidates, symmetric motion partition (SMP) mode is disabled for non-8×8 coding units (CUs). 4) A fast coding unit filtering strategy is proposed to reduce the number of CUs which need to be fine-processed. Experimental results demonstrate that our fast strategies can achieve 35.4%-58.7% time reduction with 0.68%-1.96% BD-rate increment in RA case. Compared with similar works, the proposed strategies are not only among the best performing in average-case complexity reduction, but also notably outperforming in the worst cases.
Zhengxue CHENG
Shanghai Jiao Tong University,Waseda University
Heming SUN
Waseda University
Dajiang ZHOU
Waseda University
Shinji KIMURA
Waseda University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Zhengxue CHENG, Heming SUN, Dajiang ZHOU, Shinji KIMURA, "Accelerating HEVC Inter Prediction with Improved Merge Mode Handling" in IEICE TRANSACTIONS on Fundamentals,
vol. E100-A, no. 2, pp. 546-554, February 2017, doi: 10.1587/transfun.E100.A.546.
Abstract: High Efficiency Video Coding (HEVC/H.265) obtains 50% bit rate reduction than H.264/AVC standard with comparable quality at the cost of high computational complexity. Merge mode is one of the most important new features introduced in HEVC's inter prediction. Merge mode and traditional inter mode consume about 90% of the total encoding time. To address this high complexity, this paper utilizes the merge mode to accelerate inter prediction by four strategies. 1) A merge candidate decision is proposed by the sum of absolute transformed difference (SATD) cost. 2) An early merge termination is presented with more than 90% accuracy. 3) Due to the compensation effect of merge candidates, symmetric motion partition (SMP) mode is disabled for non-8×8 coding units (CUs). 4) A fast coding unit filtering strategy is proposed to reduce the number of CUs which need to be fine-processed. Experimental results demonstrate that our fast strategies can achieve 35.4%-58.7% time reduction with 0.68%-1.96% BD-rate increment in RA case. Compared with similar works, the proposed strategies are not only among the best performing in average-case complexity reduction, but also notably outperforming in the worst cases.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E100.A.546/_p
Copy
@ARTICLE{e100-a_2_546,
author={Zhengxue CHENG, Heming SUN, Dajiang ZHOU, Shinji KIMURA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Accelerating HEVC Inter Prediction with Improved Merge Mode Handling},
year={2017},
volume={E100-A},
number={2},
pages={546-554},
abstract={High Efficiency Video Coding (HEVC/H.265) obtains 50% bit rate reduction than H.264/AVC standard with comparable quality at the cost of high computational complexity. Merge mode is one of the most important new features introduced in HEVC's inter prediction. Merge mode and traditional inter mode consume about 90% of the total encoding time. To address this high complexity, this paper utilizes the merge mode to accelerate inter prediction by four strategies. 1) A merge candidate decision is proposed by the sum of absolute transformed difference (SATD) cost. 2) An early merge termination is presented with more than 90% accuracy. 3) Due to the compensation effect of merge candidates, symmetric motion partition (SMP) mode is disabled for non-8×8 coding units (CUs). 4) A fast coding unit filtering strategy is proposed to reduce the number of CUs which need to be fine-processed. Experimental results demonstrate that our fast strategies can achieve 35.4%-58.7% time reduction with 0.68%-1.96% BD-rate increment in RA case. Compared with similar works, the proposed strategies are not only among the best performing in average-case complexity reduction, but also notably outperforming in the worst cases.},
keywords={},
doi={10.1587/transfun.E100.A.546},
ISSN={1745-1337},
month={February},}
Copy
TY - JOUR
TI - Accelerating HEVC Inter Prediction with Improved Merge Mode Handling
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 546
EP - 554
AU - Zhengxue CHENG
AU - Heming SUN
AU - Dajiang ZHOU
AU - Shinji KIMURA
PY - 2017
DO - 10.1587/transfun.E100.A.546
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E100-A
IS - 2
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - February 2017
AB - High Efficiency Video Coding (HEVC/H.265) obtains 50% bit rate reduction than H.264/AVC standard with comparable quality at the cost of high computational complexity. Merge mode is one of the most important new features introduced in HEVC's inter prediction. Merge mode and traditional inter mode consume about 90% of the total encoding time. To address this high complexity, this paper utilizes the merge mode to accelerate inter prediction by four strategies. 1) A merge candidate decision is proposed by the sum of absolute transformed difference (SATD) cost. 2) An early merge termination is presented with more than 90% accuracy. 3) Due to the compensation effect of merge candidates, symmetric motion partition (SMP) mode is disabled for non-8×8 coding units (CUs). 4) A fast coding unit filtering strategy is proposed to reduce the number of CUs which need to be fine-processed. Experimental results demonstrate that our fast strategies can achieve 35.4%-58.7% time reduction with 0.68%-1.96% BD-rate increment in RA case. Compared with similar works, the proposed strategies are not only among the best performing in average-case complexity reduction, but also notably outperforming in the worst cases.
ER -