The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.
Takafumi HAYASHI
Niigata University
Takao MAEDA
University of Aizu
Anh T. PHAM
University of Aizu
Shinya MATSUFUJI
Yamaguchi University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takafumi HAYASHI, Takao MAEDA, Anh T. PHAM, Shinya MATSUFUJI, "A Novel Class of Structured Zero-Correlation Zone Sequence Sets" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 12, pp. 2171-2183, December 2018, doi: 10.1587/transfun.E101.A.2171.
Abstract: The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.2171/_p
Copy
@ARTICLE{e101-a_12_2171,
author={Takafumi HAYASHI, Takao MAEDA, Anh T. PHAM, Shinya MATSUFUJI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Novel Class of Structured Zero-Correlation Zone Sequence Sets},
year={2018},
volume={E101-A},
number={12},
pages={2171-2183},
abstract={The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.},
keywords={},
doi={10.1587/transfun.E101.A.2171},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - A Novel Class of Structured Zero-Correlation Zone Sequence Sets
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2171
EP - 2183
AU - Takafumi HAYASHI
AU - Takao MAEDA
AU - Anh T. PHAM
AU - Shinya MATSUFUJI
PY - 2018
DO - 10.1587/transfun.E101.A.2171
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2018
AB - The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.
ER -