The search functionality is under construction.

The search functionality is under construction.

As described in this paper, construction and blind estimation methods of phase sequences are proposed for subcarrier-phase control based peak-to-average power ratio (PAPR) reduction in low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) systems. On the transmitter side, phase sequence patterns are constructed based on a given parity-check matrix. The PAPR of the OFDM signal is reduced by multiplying the constructed phase sequence selected from the same number of candidates as the number of weighting factor (WF) combinations in a partial transmit sequence (PTS) method. On the receiver side, the phase sequence is estimated blindly using the decoding function, i.e., the most likely phase sequence among a limited number of possible phase sequence candidates is inferred by comparing the sum-product calculation results of each candidate. Computer simulation results show that PAPR of QPSK-OFDM and 16QAM-OFDM signals can be reduced respectively by about 3.7 dB and 4.0 dB without marked degradation of the block error rate (BLER) performance as compared to perfect estimation in an attenuated 12-path Rayleigh fading condition.

- Publication
- IEICE TRANSACTIONS on Fundamentals Vol.E93-A No.11 pp.2130-2140

- Publication Date
- 2010/11/01

- Publicized

- Online ISSN
- 1745-1337

- DOI
- 10.1587/transfun.E93.A.2130

- Type of Manuscript
- Special Section PAPER (Special Section on Smart Multimedia & Communication Systems)

- Category

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Osamu MUTA, "Construction and Blind Estimation of Phase Sequences for Subcarrier-Phase Control Based PAPR Reduction in LDPC Coded OFDM Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 11, pp. 2130-2140, November 2010, doi: 10.1587/transfun.E93.A.2130.

Abstract: As described in this paper, construction and blind estimation methods of phase sequences are proposed for subcarrier-phase control based peak-to-average power ratio (PAPR) reduction in low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) systems. On the transmitter side, phase sequence patterns are constructed based on a given parity-check matrix. The PAPR of the OFDM signal is reduced by multiplying the constructed phase sequence selected from the same number of candidates as the number of weighting factor (WF) combinations in a partial transmit sequence (PTS) method. On the receiver side, the phase sequence is estimated blindly using the decoding function, i.e., the most likely phase sequence among a limited number of possible phase sequence candidates is inferred by comparing the sum-product calculation results of each candidate. Computer simulation results show that PAPR of QPSK-OFDM and 16QAM-OFDM signals can be reduced respectively by about 3.7 dB and 4.0 dB without marked degradation of the block error rate (BLER) performance as compared to perfect estimation in an attenuated 12-path Rayleigh fading condition.

URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.2130/_p

Copy

@ARTICLE{e93-a_11_2130,

author={Osamu MUTA, },

journal={IEICE TRANSACTIONS on Fundamentals},

title={Construction and Blind Estimation of Phase Sequences for Subcarrier-Phase Control Based PAPR Reduction in LDPC Coded OFDM Systems},

year={2010},

volume={E93-A},

number={11},

pages={2130-2140},

abstract={As described in this paper, construction and blind estimation methods of phase sequences are proposed for subcarrier-phase control based peak-to-average power ratio (PAPR) reduction in low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) systems. On the transmitter side, phase sequence patterns are constructed based on a given parity-check matrix. The PAPR of the OFDM signal is reduced by multiplying the constructed phase sequence selected from the same number of candidates as the number of weighting factor (WF) combinations in a partial transmit sequence (PTS) method. On the receiver side, the phase sequence is estimated blindly using the decoding function, i.e., the most likely phase sequence among a limited number of possible phase sequence candidates is inferred by comparing the sum-product calculation results of each candidate. Computer simulation results show that PAPR of QPSK-OFDM and 16QAM-OFDM signals can be reduced respectively by about 3.7 dB and 4.0 dB without marked degradation of the block error rate (BLER) performance as compared to perfect estimation in an attenuated 12-path Rayleigh fading condition.},

keywords={},

doi={10.1587/transfun.E93.A.2130},

ISSN={1745-1337},

month={November},}

Copy

TY - JOUR

TI - Construction and Blind Estimation of Phase Sequences for Subcarrier-Phase Control Based PAPR Reduction in LDPC Coded OFDM Systems

T2 - IEICE TRANSACTIONS on Fundamentals

SP - 2130

EP - 2140

AU - Osamu MUTA

PY - 2010

DO - 10.1587/transfun.E93.A.2130

JO - IEICE TRANSACTIONS on Fundamentals

SN - 1745-1337

VL - E93-A

IS - 11

JA - IEICE TRANSACTIONS on Fundamentals

Y1 - November 2010

AB - As described in this paper, construction and blind estimation methods of phase sequences are proposed for subcarrier-phase control based peak-to-average power ratio (PAPR) reduction in low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) systems. On the transmitter side, phase sequence patterns are constructed based on a given parity-check matrix. The PAPR of the OFDM signal is reduced by multiplying the constructed phase sequence selected from the same number of candidates as the number of weighting factor (WF) combinations in a partial transmit sequence (PTS) method. On the receiver side, the phase sequence is estimated blindly using the decoding function, i.e., the most likely phase sequence among a limited number of possible phase sequence candidates is inferred by comparing the sum-product calculation results of each candidate. Computer simulation results show that PAPR of QPSK-OFDM and 16QAM-OFDM signals can be reduced respectively by about 3.7 dB and 4.0 dB without marked degradation of the block error rate (BLER) performance as compared to perfect estimation in an attenuated 12-path Rayleigh fading condition.

ER -