In this paper, we propose a jointly optimized predictive-adaptive partitioned block transform to exploit the spatial characteristics of intra residuals and improve video coding performance. Under the assumptions of traditional Markov representations, the asymmetric discrete sine transform (ADST) can be combined with a discrete cosine transform (DCT) for video coding. In comparison, the interpolative Markov representation has a lower mean-square error for images or regions that have relatively high contrast, and is insensitive to changes in image statistics. Hence, we derive an even discrete sine transform (EDST) from the interpolative Markov model, and use a coding scheme to switch between EDST and DCT, depending on the prediction direction and boundary information. To obtain an implementation independent of multipliers, we also propose an orthogonal 4-point integer EDST, which consists solely of adds and bit-shifts. We implement our hybrid transform coding scheme within the H.264/AVC intra-mode framework. Experimental results show that the proposed scheme significantly outperforms standard DCT and ADST. It also greatly reduces the blocking artifacts typically observed around block edges, because the new transform is more adaptable to the characteristics of intra-prediction residuals.
Di WU
Sichuan University
Xiaohai HE
Sichuan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Di WU, Xiaohai HE, "A Jointly Optimized Predictive-Adaptive Partitioned Block Transform for Video Coding" in IEICE TRANSACTIONS on Fundamentals,
vol. E96-A, no. 11, pp. 2161-2168, November 2013, doi: 10.1587/transfun.E96.A.2161.
Abstract: In this paper, we propose a jointly optimized predictive-adaptive partitioned block transform to exploit the spatial characteristics of intra residuals and improve video coding performance. Under the assumptions of traditional Markov representations, the asymmetric discrete sine transform (ADST) can be combined with a discrete cosine transform (DCT) for video coding. In comparison, the interpolative Markov representation has a lower mean-square error for images or regions that have relatively high contrast, and is insensitive to changes in image statistics. Hence, we derive an even discrete sine transform (EDST) from the interpolative Markov model, and use a coding scheme to switch between EDST and DCT, depending on the prediction direction and boundary information. To obtain an implementation independent of multipliers, we also propose an orthogonal 4-point integer EDST, which consists solely of adds and bit-shifts. We implement our hybrid transform coding scheme within the H.264/AVC intra-mode framework. Experimental results show that the proposed scheme significantly outperforms standard DCT and ADST. It also greatly reduces the blocking artifacts typically observed around block edges, because the new transform is more adaptable to the characteristics of intra-prediction residuals.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E96.A.2161/_p
Copy
@ARTICLE{e96-a_11_2161,
author={Di WU, Xiaohai HE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Jointly Optimized Predictive-Adaptive Partitioned Block Transform for Video Coding},
year={2013},
volume={E96-A},
number={11},
pages={2161-2168},
abstract={In this paper, we propose a jointly optimized predictive-adaptive partitioned block transform to exploit the spatial characteristics of intra residuals and improve video coding performance. Under the assumptions of traditional Markov representations, the asymmetric discrete sine transform (ADST) can be combined with a discrete cosine transform (DCT) for video coding. In comparison, the interpolative Markov representation has a lower mean-square error for images or regions that have relatively high contrast, and is insensitive to changes in image statistics. Hence, we derive an even discrete sine transform (EDST) from the interpolative Markov model, and use a coding scheme to switch between EDST and DCT, depending on the prediction direction and boundary information. To obtain an implementation independent of multipliers, we also propose an orthogonal 4-point integer EDST, which consists solely of adds and bit-shifts. We implement our hybrid transform coding scheme within the H.264/AVC intra-mode framework. Experimental results show that the proposed scheme significantly outperforms standard DCT and ADST. It also greatly reduces the blocking artifacts typically observed around block edges, because the new transform is more adaptable to the characteristics of intra-prediction residuals.},
keywords={},
doi={10.1587/transfun.E96.A.2161},
ISSN={1745-1337},
month={November},}
Copy
TY - JOUR
TI - A Jointly Optimized Predictive-Adaptive Partitioned Block Transform for Video Coding
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2161
EP - 2168
AU - Di WU
AU - Xiaohai HE
PY - 2013
DO - 10.1587/transfun.E96.A.2161
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E96-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2013
AB - In this paper, we propose a jointly optimized predictive-adaptive partitioned block transform to exploit the spatial characteristics of intra residuals and improve video coding performance. Under the assumptions of traditional Markov representations, the asymmetric discrete sine transform (ADST) can be combined with a discrete cosine transform (DCT) for video coding. In comparison, the interpolative Markov representation has a lower mean-square error for images or regions that have relatively high contrast, and is insensitive to changes in image statistics. Hence, we derive an even discrete sine transform (EDST) from the interpolative Markov model, and use a coding scheme to switch between EDST and DCT, depending on the prediction direction and boundary information. To obtain an implementation independent of multipliers, we also propose an orthogonal 4-point integer EDST, which consists solely of adds and bit-shifts. We implement our hybrid transform coding scheme within the H.264/AVC intra-mode framework. Experimental results show that the proposed scheme significantly outperforms standard DCT and ADST. It also greatly reduces the blocking artifacts typically observed around block edges, because the new transform is more adaptable to the characteristics of intra-prediction residuals.
ER -