An atmospheric visibility measurement system capable of quantifying the most common operating range of onboard exteroceptive sensors is a key parameter in the creation of driving assistance systems. This information is then utilized to adapt sensor operations and processing or to alert the driver that the onboard assistance system is momentarily inoperative. Moreover, a system capable of either detecting the presence of fog or estimating visibility distances constitutes in itself a driving aid. In this paper, we first present a review of different optical sensors likely to measure the visibility distance. We then present our stereovision based technique to estimate what we call the "mobilized visibility distance". This is the distance to the most distant object on the road surface having a contrast above 5%. In fact, this definition is very close to the definition of the meteorological visibility distance proposed by the International Commission on Illumination (CIE). The method combines the computation of both a depth map of the vehicle environment using the "v-disparity" approach and of local contrasts above 5%. Both methods are described separately. Then, their combination is detailed. A qualitative evaluation is done using different video sequences. Finally, a static quantitative evaluation is also performed thanks to reference targets installed on a dedicated test site.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Nicolas HAUTIERE, Raphael LABAYRADE, Didier AUBERT, "Estimation of the Visibility Distance by Stereovision: A Generic Approach" in IEICE TRANSACTIONS on Information,
vol. E89-D, no. 7, pp. 2084-2091, July 2006, doi: 10.1093/ietisy/e89-d.7.2084.
Abstract: An atmospheric visibility measurement system capable of quantifying the most common operating range of onboard exteroceptive sensors is a key parameter in the creation of driving assistance systems. This information is then utilized to adapt sensor operations and processing or to alert the driver that the onboard assistance system is momentarily inoperative. Moreover, a system capable of either detecting the presence of fog or estimating visibility distances constitutes in itself a driving aid. In this paper, we first present a review of different optical sensors likely to measure the visibility distance. We then present our stereovision based technique to estimate what we call the "mobilized visibility distance". This is the distance to the most distant object on the road surface having a contrast above 5%. In fact, this definition is very close to the definition of the meteorological visibility distance proposed by the International Commission on Illumination (CIE). The method combines the computation of both a depth map of the vehicle environment using the "v-disparity" approach and of local contrasts above 5%. Both methods are described separately. Then, their combination is detailed. A qualitative evaluation is done using different video sequences. Finally, a static quantitative evaluation is also performed thanks to reference targets installed on a dedicated test site.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e89-d.7.2084/_p
Copy
@ARTICLE{e89-d_7_2084,
author={Nicolas HAUTIERE, Raphael LABAYRADE, Didier AUBERT, },
journal={IEICE TRANSACTIONS on Information},
title={Estimation of the Visibility Distance by Stereovision: A Generic Approach},
year={2006},
volume={E89-D},
number={7},
pages={2084-2091},
abstract={An atmospheric visibility measurement system capable of quantifying the most common operating range of onboard exteroceptive sensors is a key parameter in the creation of driving assistance systems. This information is then utilized to adapt sensor operations and processing or to alert the driver that the onboard assistance system is momentarily inoperative. Moreover, a system capable of either detecting the presence of fog or estimating visibility distances constitutes in itself a driving aid. In this paper, we first present a review of different optical sensors likely to measure the visibility distance. We then present our stereovision based technique to estimate what we call the "mobilized visibility distance". This is the distance to the most distant object on the road surface having a contrast above 5%. In fact, this definition is very close to the definition of the meteorological visibility distance proposed by the International Commission on Illumination (CIE). The method combines the computation of both a depth map of the vehicle environment using the "v-disparity" approach and of local contrasts above 5%. Both methods are described separately. Then, their combination is detailed. A qualitative evaluation is done using different video sequences. Finally, a static quantitative evaluation is also performed thanks to reference targets installed on a dedicated test site.},
keywords={},
doi={10.1093/ietisy/e89-d.7.2084},
ISSN={1745-1361},
month={July},}
Copy
TY - JOUR
TI - Estimation of the Visibility Distance by Stereovision: A Generic Approach
T2 - IEICE TRANSACTIONS on Information
SP - 2084
EP - 2091
AU - Nicolas HAUTIERE
AU - Raphael LABAYRADE
AU - Didier AUBERT
PY - 2006
DO - 10.1093/ietisy/e89-d.7.2084
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E89-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2006
AB - An atmospheric visibility measurement system capable of quantifying the most common operating range of onboard exteroceptive sensors is a key parameter in the creation of driving assistance systems. This information is then utilized to adapt sensor operations and processing or to alert the driver that the onboard assistance system is momentarily inoperative. Moreover, a system capable of either detecting the presence of fog or estimating visibility distances constitutes in itself a driving aid. In this paper, we first present a review of different optical sensors likely to measure the visibility distance. We then present our stereovision based technique to estimate what we call the "mobilized visibility distance". This is the distance to the most distant object on the road surface having a contrast above 5%. In fact, this definition is very close to the definition of the meteorological visibility distance proposed by the International Commission on Illumination (CIE). The method combines the computation of both a depth map of the vehicle environment using the "v-disparity" approach and of local contrasts above 5%. Both methods are described separately. Then, their combination is detailed. A qualitative evaluation is done using different video sequences. Finally, a static quantitative evaluation is also performed thanks to reference targets installed on a dedicated test site.
ER -