One of the most effective methods in speech recognition is the HMM which has been used to model speech statistically. The discrete distribution and the continuos distribution HMMs have been widely used in various applications. However, in recent years, HMMs with various output probability functions have been proposed to further improve recognition performance, e.g. the Gaussian mixture continuous and the semi-continuous distributed HMMs. We recently have also proposed the RBF (radial basis function)-based HMM and the VQ-distortion based HMM which use a RBF function and VQ-distortion measure at each state instead of an output probability density function used by traditional HMMs. In this paper, we describe the RBF-based HMM and the VQ-distortion based HMM and compare their performance with the discrete distributed, the Gaussian mixture distributed and the semi-continuous distributed HMMs based on their speech recognition performance rates through experiments on speaker-independent spoken digit recognition. Our results confirmed that the RBF-based and VQ-distortion based HMMs are more robust and superior to traditional HMMs.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Seiichi NAKAGAWA, Li ZHAO, Hideyuki SUZUKI, "A Comparative Study of Output Probability Functions in HMMs" in IEICE TRANSACTIONS on Information,
vol. E78-D, no. 6, pp. 669-675, June 1995, doi: .
Abstract: One of the most effective methods in speech recognition is the HMM which has been used to model speech statistically. The discrete distribution and the continuos distribution HMMs have been widely used in various applications. However, in recent years, HMMs with various output probability functions have been proposed to further improve recognition performance, e.g. the Gaussian mixture continuous and the semi-continuous distributed HMMs. We recently have also proposed the RBF (radial basis function)-based HMM and the VQ-distortion based HMM which use a RBF function and VQ-distortion measure at each state instead of an output probability density function used by traditional HMMs. In this paper, we describe the RBF-based HMM and the VQ-distortion based HMM and compare their performance with the discrete distributed, the Gaussian mixture distributed and the semi-continuous distributed HMMs based on their speech recognition performance rates through experiments on speaker-independent spoken digit recognition. Our results confirmed that the RBF-based and VQ-distortion based HMMs are more robust and superior to traditional HMMs.
URL: https://global.ieice.org/en_transactions/information/10.1587/e78-d_6_669/_p
Copy
@ARTICLE{e78-d_6_669,
author={Seiichi NAKAGAWA, Li ZHAO, Hideyuki SUZUKI, },
journal={IEICE TRANSACTIONS on Information},
title={A Comparative Study of Output Probability Functions in HMMs},
year={1995},
volume={E78-D},
number={6},
pages={669-675},
abstract={One of the most effective methods in speech recognition is the HMM which has been used to model speech statistically. The discrete distribution and the continuos distribution HMMs have been widely used in various applications. However, in recent years, HMMs with various output probability functions have been proposed to further improve recognition performance, e.g. the Gaussian mixture continuous and the semi-continuous distributed HMMs. We recently have also proposed the RBF (radial basis function)-based HMM and the VQ-distortion based HMM which use a RBF function and VQ-distortion measure at each state instead of an output probability density function used by traditional HMMs. In this paper, we describe the RBF-based HMM and the VQ-distortion based HMM and compare their performance with the discrete distributed, the Gaussian mixture distributed and the semi-continuous distributed HMMs based on their speech recognition performance rates through experiments on speaker-independent spoken digit recognition. Our results confirmed that the RBF-based and VQ-distortion based HMMs are more robust and superior to traditional HMMs.},
keywords={},
doi={},
ISSN={},
month={June},}
Copy
TY - JOUR
TI - A Comparative Study of Output Probability Functions in HMMs
T2 - IEICE TRANSACTIONS on Information
SP - 669
EP - 675
AU - Seiichi NAKAGAWA
AU - Li ZHAO
AU - Hideyuki SUZUKI
PY - 1995
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E78-D
IS - 6
JA - IEICE TRANSACTIONS on Information
Y1 - June 1995
AB - One of the most effective methods in speech recognition is the HMM which has been used to model speech statistically. The discrete distribution and the continuos distribution HMMs have been widely used in various applications. However, in recent years, HMMs with various output probability functions have been proposed to further improve recognition performance, e.g. the Gaussian mixture continuous and the semi-continuous distributed HMMs. We recently have also proposed the RBF (radial basis function)-based HMM and the VQ-distortion based HMM which use a RBF function and VQ-distortion measure at each state instead of an output probability density function used by traditional HMMs. In this paper, we describe the RBF-based HMM and the VQ-distortion based HMM and compare their performance with the discrete distributed, the Gaussian mixture distributed and the semi-continuous distributed HMMs based on their speech recognition performance rates through experiments on speaker-independent spoken digit recognition. Our results confirmed that the RBF-based and VQ-distortion based HMMs are more robust and superior to traditional HMMs.
ER -