In this paper, we propose a new method of dialogue data collection which can be used to evaluate modules of a spoken dialogue system. To evaluate the module, it is necessary to use suitable data. Human-human dialogue data have not been appropriate to module evaluation, because spontaneous data usually include too much specific phenomena such as fillers, restarts, pauses, and hesitations. Human-machine dialogue data have not been appropriate to module evaluation, because the dialogue was unnatural and the available vocabularies were limited. Here, we propose 'Hybrid method' for the collection of spoken dialogue data. The merit is that, the collected data can be used as test data for the evaluation of a spoken dialogue system without any modification. In our method a human takes the role of some modules of the system and the system, also, works as the other part of the system together. For example, humans works as the speech recognition module and the dialogue management and a machine does the other part, response generation module. The collected data are good for the evaluation of the speech recognition and the dialogue management modules. The reasons are as follows. (1) Lexicon: The lexicon was composed of limited words and dependent on the task. (2) Grammar: The intention expressed by the subjects were concise and clear. (3) Topics: There were few utterances outside the task domain. The collected data can be used test data for the evaluation of a spoken dialogue system without any modification.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shu NAKAZATO, Ikuo KUDO, Katsuhiko SHIRAI, "Hybrid Method of Data Collection for Evaluating Speech Dialogue System" in IEICE TRANSACTIONS on Information,
vol. E79-D, no. 1, pp. 41-46, January 1996, doi: .
Abstract: In this paper, we propose a new method of dialogue data collection which can be used to evaluate modules of a spoken dialogue system. To evaluate the module, it is necessary to use suitable data. Human-human dialogue data have not been appropriate to module evaluation, because spontaneous data usually include too much specific phenomena such as fillers, restarts, pauses, and hesitations. Human-machine dialogue data have not been appropriate to module evaluation, because the dialogue was unnatural and the available vocabularies were limited. Here, we propose 'Hybrid method' for the collection of spoken dialogue data. The merit is that, the collected data can be used as test data for the evaluation of a spoken dialogue system without any modification. In our method a human takes the role of some modules of the system and the system, also, works as the other part of the system together. For example, humans works as the speech recognition module and the dialogue management and a machine does the other part, response generation module. The collected data are good for the evaluation of the speech recognition and the dialogue management modules. The reasons are as follows. (1) Lexicon: The lexicon was composed of limited words and dependent on the task. (2) Grammar: The intention expressed by the subjects were concise and clear. (3) Topics: There were few utterances outside the task domain. The collected data can be used test data for the evaluation of a spoken dialogue system without any modification.
URL: https://global.ieice.org/en_transactions/information/10.1587/e79-d_1_41/_p
Copy
@ARTICLE{e79-d_1_41,
author={Shu NAKAZATO, Ikuo KUDO, Katsuhiko SHIRAI, },
journal={IEICE TRANSACTIONS on Information},
title={Hybrid Method of Data Collection for Evaluating Speech Dialogue System},
year={1996},
volume={E79-D},
number={1},
pages={41-46},
abstract={In this paper, we propose a new method of dialogue data collection which can be used to evaluate modules of a spoken dialogue system. To evaluate the module, it is necessary to use suitable data. Human-human dialogue data have not been appropriate to module evaluation, because spontaneous data usually include too much specific phenomena such as fillers, restarts, pauses, and hesitations. Human-machine dialogue data have not been appropriate to module evaluation, because the dialogue was unnatural and the available vocabularies were limited. Here, we propose 'Hybrid method' for the collection of spoken dialogue data. The merit is that, the collected data can be used as test data for the evaluation of a spoken dialogue system without any modification. In our method a human takes the role of some modules of the system and the system, also, works as the other part of the system together. For example, humans works as the speech recognition module and the dialogue management and a machine does the other part, response generation module. The collected data are good for the evaluation of the speech recognition and the dialogue management modules. The reasons are as follows. (1) Lexicon: The lexicon was composed of limited words and dependent on the task. (2) Grammar: The intention expressed by the subjects were concise and clear. (3) Topics: There were few utterances outside the task domain. The collected data can be used test data for the evaluation of a spoken dialogue system without any modification.},
keywords={},
doi={},
ISSN={},
month={January},}
Copy
TY - JOUR
TI - Hybrid Method of Data Collection for Evaluating Speech Dialogue System
T2 - IEICE TRANSACTIONS on Information
SP - 41
EP - 46
AU - Shu NAKAZATO
AU - Ikuo KUDO
AU - Katsuhiko SHIRAI
PY - 1996
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E79-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 1996
AB - In this paper, we propose a new method of dialogue data collection which can be used to evaluate modules of a spoken dialogue system. To evaluate the module, it is necessary to use suitable data. Human-human dialogue data have not been appropriate to module evaluation, because spontaneous data usually include too much specific phenomena such as fillers, restarts, pauses, and hesitations. Human-machine dialogue data have not been appropriate to module evaluation, because the dialogue was unnatural and the available vocabularies were limited. Here, we propose 'Hybrid method' for the collection of spoken dialogue data. The merit is that, the collected data can be used as test data for the evaluation of a spoken dialogue system without any modification. In our method a human takes the role of some modules of the system and the system, also, works as the other part of the system together. For example, humans works as the speech recognition module and the dialogue management and a machine does the other part, response generation module. The collected data are good for the evaluation of the speech recognition and the dialogue management modules. The reasons are as follows. (1) Lexicon: The lexicon was composed of limited words and dependent on the task. (2) Grammar: The intention expressed by the subjects were concise and clear. (3) Topics: There were few utterances outside the task domain. The collected data can be used test data for the evaluation of a spoken dialogue system without any modification.
ER -