Obradovic and Parberry showed that any n-input k-ary function can be computed by a depth 4 unit-weight k-ary threshold circuit of size O(nkn). They also showed that any n-input k-ary symmetric function can be computed by a depth 6 unit-weight k-ary threshold circuit of size O(nk+1). In this paper, we improve upon and expand their results. The k-ary threshold circuits of nonunit weight and unit weight are considered. We show that any n-input k-ary function can be computed by a depth 2 k-ary threshold circuit of size O(kn-1). This means that depth 2 is optimal for computing some k-ary functions (e.g., a PARITY function). We also show that any n-input k-ary function can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(kn). Next, we show that any n-input k-ary symmetric function can be computed by a depth 3 k-ary threshold circuit of size O(nk-1), and can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(knk-1). Finally, we show that if the weights of the circuit are polynomially bounded, some k-ary symmetric functions cannot be computed by any depth 2 k-ary threshold circuit of polynomial-size.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shao-Chin SUNG, Kunihiko HIRAISHI, "A Note on the Complexity of k-Ary Threshold Circuits" in IEICE TRANSACTIONS on Information,
vol. E80-D, no. 8, pp. 767-773, August 1997, doi: .
Abstract: Obradovic and Parberry showed that any n-input k-ary function can be computed by a depth 4 unit-weight k-ary threshold circuit of size O(nkn). They also showed that any n-input k-ary symmetric function can be computed by a depth 6 unit-weight k-ary threshold circuit of size O(nk+1). In this paper, we improve upon and expand their results. The k-ary threshold circuits of nonunit weight and unit weight are considered. We show that any n-input k-ary function can be computed by a depth 2 k-ary threshold circuit of size O(kn-1). This means that depth 2 is optimal for computing some k-ary functions (e.g., a PARITY function). We also show that any n-input k-ary function can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(kn). Next, we show that any n-input k-ary symmetric function can be computed by a depth 3 k-ary threshold circuit of size O(nk-1), and can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(knk-1). Finally, we show that if the weights of the circuit are polynomially bounded, some k-ary symmetric functions cannot be computed by any depth 2 k-ary threshold circuit of polynomial-size.
URL: https://global.ieice.org/en_transactions/information/10.1587/e80-d_8_767/_p
Copy
@ARTICLE{e80-d_8_767,
author={Shao-Chin SUNG, Kunihiko HIRAISHI, },
journal={IEICE TRANSACTIONS on Information},
title={A Note on the Complexity of k-Ary Threshold Circuits},
year={1997},
volume={E80-D},
number={8},
pages={767-773},
abstract={Obradovic and Parberry showed that any n-input k-ary function can be computed by a depth 4 unit-weight k-ary threshold circuit of size O(nkn). They also showed that any n-input k-ary symmetric function can be computed by a depth 6 unit-weight k-ary threshold circuit of size O(nk+1). In this paper, we improve upon and expand their results. The k-ary threshold circuits of nonunit weight and unit weight are considered. We show that any n-input k-ary function can be computed by a depth 2 k-ary threshold circuit of size O(kn-1). This means that depth 2 is optimal for computing some k-ary functions (e.g., a PARITY function). We also show that any n-input k-ary function can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(kn). Next, we show that any n-input k-ary symmetric function can be computed by a depth 3 k-ary threshold circuit of size O(nk-1), and can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(knk-1). Finally, we show that if the weights of the circuit are polynomially bounded, some k-ary symmetric functions cannot be computed by any depth 2 k-ary threshold circuit of polynomial-size.},
keywords={},
doi={},
ISSN={},
month={August},}
Copy
TY - JOUR
TI - A Note on the Complexity of k-Ary Threshold Circuits
T2 - IEICE TRANSACTIONS on Information
SP - 767
EP - 773
AU - Shao-Chin SUNG
AU - Kunihiko HIRAISHI
PY - 1997
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E80-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 1997
AB - Obradovic and Parberry showed that any n-input k-ary function can be computed by a depth 4 unit-weight k-ary threshold circuit of size O(nkn). They also showed that any n-input k-ary symmetric function can be computed by a depth 6 unit-weight k-ary threshold circuit of size O(nk+1). In this paper, we improve upon and expand their results. The k-ary threshold circuits of nonunit weight and unit weight are considered. We show that any n-input k-ary function can be computed by a depth 2 k-ary threshold circuit of size O(kn-1). This means that depth 2 is optimal for computing some k-ary functions (e.g., a PARITY function). We also show that any n-input k-ary function can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(kn). Next, we show that any n-input k-ary symmetric function can be computed by a depth 3 k-ary threshold circuit of size O(nk-1), and can be computed by a depth 3 unit-weight k-ary threshold circuit of size O(knk-1). Finally, we show that if the weights of the circuit are polynomially bounded, some k-ary symmetric functions cannot be computed by any depth 2 k-ary threshold circuit of polynomial-size.
ER -