We have developed a new disparity mapping technique for image morphing which prevents synthesized images from blurring and a fast rendering technique which realizes interactive morphing animation. In the image morphing rendering process, all pixels are moved according to their disparity maps and then distorted images are mixed with each other. Calculation costs of this process tend to be high because pixel per pixel moving and mixing are included. And if the accuracy of the disparity maps is low, synthesized images become blurred. This paper describes new two techniques for overcoming these problems. One is a disparity mapping technique by which the edges in each input image are accurately mapped to each other. This technique reduces blurring in synthesized images. The other is a data transformation technique by which the morphing rendering process is replaced with texture mapping, orthographic camera, α-brending and z-buffering. This transformation enables the morphing rendering process to be accelerated by 3D accelerators, thus enabling interactive morphing animations to be achieved on ordinary PCs.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Toshiyuki MORITSU, Makoto KATO, "Disparity Mapping Technique and Fast Rendering Technique for Image Morphing" in IEICE TRANSACTIONS on Information,
vol. E83-D, no. 2, pp. 275-282, February 2000, doi: .
Abstract: We have developed a new disparity mapping technique for image morphing which prevents synthesized images from blurring and a fast rendering technique which realizes interactive morphing animation. In the image morphing rendering process, all pixels are moved according to their disparity maps and then distorted images are mixed with each other. Calculation costs of this process tend to be high because pixel per pixel moving and mixing are included. And if the accuracy of the disparity maps is low, synthesized images become blurred. This paper describes new two techniques for overcoming these problems. One is a disparity mapping technique by which the edges in each input image are accurately mapped to each other. This technique reduces blurring in synthesized images. The other is a data transformation technique by which the morphing rendering process is replaced with texture mapping, orthographic camera, α-brending and z-buffering. This transformation enables the morphing rendering process to be accelerated by 3D accelerators, thus enabling interactive morphing animations to be achieved on ordinary PCs.
URL: https://global.ieice.org/en_transactions/information/10.1587/e83-d_2_275/_p
Copy
@ARTICLE{e83-d_2_275,
author={Toshiyuki MORITSU, Makoto KATO, },
journal={IEICE TRANSACTIONS on Information},
title={Disparity Mapping Technique and Fast Rendering Technique for Image Morphing},
year={2000},
volume={E83-D},
number={2},
pages={275-282},
abstract={We have developed a new disparity mapping technique for image morphing which prevents synthesized images from blurring and a fast rendering technique which realizes interactive morphing animation. In the image morphing rendering process, all pixels are moved according to their disparity maps and then distorted images are mixed with each other. Calculation costs of this process tend to be high because pixel per pixel moving and mixing are included. And if the accuracy of the disparity maps is low, synthesized images become blurred. This paper describes new two techniques for overcoming these problems. One is a disparity mapping technique by which the edges in each input image are accurately mapped to each other. This technique reduces blurring in synthesized images. The other is a data transformation technique by which the morphing rendering process is replaced with texture mapping, orthographic camera, α-brending and z-buffering. This transformation enables the morphing rendering process to be accelerated by 3D accelerators, thus enabling interactive morphing animations to be achieved on ordinary PCs.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - Disparity Mapping Technique and Fast Rendering Technique for Image Morphing
T2 - IEICE TRANSACTIONS on Information
SP - 275
EP - 282
AU - Toshiyuki MORITSU
AU - Makoto KATO
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E83-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2000
AB - We have developed a new disparity mapping technique for image morphing which prevents synthesized images from blurring and a fast rendering technique which realizes interactive morphing animation. In the image morphing rendering process, all pixels are moved according to their disparity maps and then distorted images are mixed with each other. Calculation costs of this process tend to be high because pixel per pixel moving and mixing are included. And if the accuracy of the disparity maps is low, synthesized images become blurred. This paper describes new two techniques for overcoming these problems. One is a disparity mapping technique by which the edges in each input image are accurately mapped to each other. This technique reduces blurring in synthesized images. The other is a data transformation technique by which the morphing rendering process is replaced with texture mapping, orthographic camera, α-brending and z-buffering. This transformation enables the morphing rendering process to be accelerated by 3D accelerators, thus enabling interactive morphing animations to be achieved on ordinary PCs.
ER -