In visual servoing, most studies are concerned with robotic application with known objects. In this paper, the problem of controlling a motion by visual servoing around an unknown object is addressed. In this case, the approach is interpreted as an initial step towards a perception goal of an unmodeled object. The main goal is to perform motion with regard to the object in order to discover several viewpoint of the object. An adaptive visual servoing scheme is proposed to perform such task. The originality of our work is based on the choice and extraction of visual features in accordance with motions to be performed. The notion of invariant feature is introduced to control the navigational task around the unknown object. During experimentation, a cartesian robot connected to a real time vision system is used. A CCD camera is mounted on the end effector of the robot. The experimental results present a linkage of desired motion around different kind of objects.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Francois BERRY, Philippe MARTINET, Jean GALLICE, "Real Time Visual Servoing around a Complex Object" in IEICE TRANSACTIONS on Information,
vol. E83-D, no. 7, pp. 1358-1368, July 2000, doi: .
Abstract: In visual servoing, most studies are concerned with robotic application with known objects. In this paper, the problem of controlling a motion by visual servoing around an unknown object is addressed. In this case, the approach is interpreted as an initial step towards a perception goal of an unmodeled object. The main goal is to perform motion with regard to the object in order to discover several viewpoint of the object. An adaptive visual servoing scheme is proposed to perform such task. The originality of our work is based on the choice and extraction of visual features in accordance with motions to be performed. The notion of invariant feature is introduced to control the navigational task around the unknown object. During experimentation, a cartesian robot connected to a real time vision system is used. A CCD camera is mounted on the end effector of the robot. The experimental results present a linkage of desired motion around different kind of objects.
URL: https://global.ieice.org/en_transactions/information/10.1587/e83-d_7_1358/_p
Copy
@ARTICLE{e83-d_7_1358,
author={Francois BERRY, Philippe MARTINET, Jean GALLICE, },
journal={IEICE TRANSACTIONS on Information},
title={Real Time Visual Servoing around a Complex Object},
year={2000},
volume={E83-D},
number={7},
pages={1358-1368},
abstract={In visual servoing, most studies are concerned with robotic application with known objects. In this paper, the problem of controlling a motion by visual servoing around an unknown object is addressed. In this case, the approach is interpreted as an initial step towards a perception goal of an unmodeled object. The main goal is to perform motion with regard to the object in order to discover several viewpoint of the object. An adaptive visual servoing scheme is proposed to perform such task. The originality of our work is based on the choice and extraction of visual features in accordance with motions to be performed. The notion of invariant feature is introduced to control the navigational task around the unknown object. During experimentation, a cartesian robot connected to a real time vision system is used. A CCD camera is mounted on the end effector of the robot. The experimental results present a linkage of desired motion around different kind of objects.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Real Time Visual Servoing around a Complex Object
T2 - IEICE TRANSACTIONS on Information
SP - 1358
EP - 1368
AU - Francois BERRY
AU - Philippe MARTINET
AU - Jean GALLICE
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E83-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2000
AB - In visual servoing, most studies are concerned with robotic application with known objects. In this paper, the problem of controlling a motion by visual servoing around an unknown object is addressed. In this case, the approach is interpreted as an initial step towards a perception goal of an unmodeled object. The main goal is to perform motion with regard to the object in order to discover several viewpoint of the object. An adaptive visual servoing scheme is proposed to perform such task. The originality of our work is based on the choice and extraction of visual features in accordance with motions to be performed. The notion of invariant feature is introduced to control the navigational task around the unknown object. During experimentation, a cartesian robot connected to a real time vision system is used. A CCD camera is mounted on the end effector of the robot. The experimental results present a linkage of desired motion around different kind of objects.
ER -