To enhance safety and traffic efficiency, a driver assistance system and an autonomous vehicle system are being developed. A preceding vehicle recognition method is important to develop such systems. In this paper, a vision-based preceding vehicle recognition method, based on supervised learning from sample images is proposed. The improvement for Modified Quadratic Discriminant Function (MQDF) classifier that is used in the proposed method is also shown. And in the case of road environment recognition including the preceding vehicle recognition, many researches have been reported. However in those researches, a quantitative evaluation with large number of images has rarely been done. Whereas, in this paper, over 1,000 sample images for passenger vehicles, which are recorded on a highway during daytime, are used for an evaluation. The evaluation result shows that the performance in a low order case is improved from the ordinary MQDF. Accordingly, the calculation time is reduced more than 20% by using the proposed method. And the feasibility of the proposed method is also proved, due to the result that the proposed method indicates over 98% as classification rate.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takeo KATO, Yoshiki NINOMIYA, "An Approach to Vehicle Recognition Using Supervised Learning" in IEICE TRANSACTIONS on Information,
vol. E83-D, no. 7, pp. 1475-1479, July 2000, doi: .
Abstract: To enhance safety and traffic efficiency, a driver assistance system and an autonomous vehicle system are being developed. A preceding vehicle recognition method is important to develop such systems. In this paper, a vision-based preceding vehicle recognition method, based on supervised learning from sample images is proposed. The improvement for Modified Quadratic Discriminant Function (MQDF) classifier that is used in the proposed method is also shown. And in the case of road environment recognition including the preceding vehicle recognition, many researches have been reported. However in those researches, a quantitative evaluation with large number of images has rarely been done. Whereas, in this paper, over 1,000 sample images for passenger vehicles, which are recorded on a highway during daytime, are used for an evaluation. The evaluation result shows that the performance in a low order case is improved from the ordinary MQDF. Accordingly, the calculation time is reduced more than 20% by using the proposed method. And the feasibility of the proposed method is also proved, due to the result that the proposed method indicates over 98% as classification rate.
URL: https://global.ieice.org/en_transactions/information/10.1587/e83-d_7_1475/_p
Copy
@ARTICLE{e83-d_7_1475,
author={Takeo KATO, Yoshiki NINOMIYA, },
journal={IEICE TRANSACTIONS on Information},
title={An Approach to Vehicle Recognition Using Supervised Learning},
year={2000},
volume={E83-D},
number={7},
pages={1475-1479},
abstract={To enhance safety and traffic efficiency, a driver assistance system and an autonomous vehicle system are being developed. A preceding vehicle recognition method is important to develop such systems. In this paper, a vision-based preceding vehicle recognition method, based on supervised learning from sample images is proposed. The improvement for Modified Quadratic Discriminant Function (MQDF) classifier that is used in the proposed method is also shown. And in the case of road environment recognition including the preceding vehicle recognition, many researches have been reported. However in those researches, a quantitative evaluation with large number of images has rarely been done. Whereas, in this paper, over 1,000 sample images for passenger vehicles, which are recorded on a highway during daytime, are used for an evaluation. The evaluation result shows that the performance in a low order case is improved from the ordinary MQDF. Accordingly, the calculation time is reduced more than 20% by using the proposed method. And the feasibility of the proposed method is also proved, due to the result that the proposed method indicates over 98% as classification rate.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - An Approach to Vehicle Recognition Using Supervised Learning
T2 - IEICE TRANSACTIONS on Information
SP - 1475
EP - 1479
AU - Takeo KATO
AU - Yoshiki NINOMIYA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E83-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2000
AB - To enhance safety and traffic efficiency, a driver assistance system and an autonomous vehicle system are being developed. A preceding vehicle recognition method is important to develop such systems. In this paper, a vision-based preceding vehicle recognition method, based on supervised learning from sample images is proposed. The improvement for Modified Quadratic Discriminant Function (MQDF) classifier that is used in the proposed method is also shown. And in the case of road environment recognition including the preceding vehicle recognition, many researches have been reported. However in those researches, a quantitative evaluation with large number of images has rarely been done. Whereas, in this paper, over 1,000 sample images for passenger vehicles, which are recorded on a highway during daytime, are used for an evaluation. The evaluation result shows that the performance in a low order case is improved from the ordinary MQDF. Accordingly, the calculation time is reduced more than 20% by using the proposed method. And the feasibility of the proposed method is also proved, due to the result that the proposed method indicates over 98% as classification rate.
ER -