The search functionality is under construction.

The search functionality is under construction.

We consider the problem of efficient learning of probabilistic concepts (p-concepts) and more generally stochastic rules in the sense defined by Kearns and Schapire and by Yamanishi. Their models extend the PAC-learning model of Valiant to the learning scenario in which the target concept or function is stochastic rather than deterministic as in Valiant's original model. In this paper, we consider the learnability of stochastic rules with respect to the classic 'Kullback-Leibler divergence' (KL divergence) as well as the quadratic distance as the distance measure between the rules. First, we show that the notion of polynomial time learnability of p-concepts and stochastic rules with fixed range size using the KL divergence is in fact equivalent to the same notion using the quadratic distance, and hence any of the distances considered in [6] and [18]: the quadratic, variation, and Hellinger distances. As a corollary, it follows that a wide range of classes of p-concepts which were shown to be polynomially learnable with respect to the quadratic distance in [6] are also learnable with respect to the KL divergence. The sample and time complexity of algorithms that would be obtained by the above general equivalence, however, are far from optimal. We present a polynomial learning algorithm with reasonable sample and time complexity for the important class of convex linear combinations of stochastic rules. We also develop a simple and versatile technique for obtaining sample complexity bounds for learning classes of stochastic rules with respect to the KL-divergence and quadratic distance, and apply them to produce bounds for the classes of probabilistic finite state acceptors (automata), probabilistic decision lists, and convex linear combinations.

- Publication
- IEICE TRANSACTIONS on Information Vol.E84-D No.3 pp.299-316

- Publication Date
- 2001/03/01

- Publicized

- Online ISSN

- DOI

- Type of Manuscript
- PAPER

- Category
- Theory of Automata, Formal Language Theory

The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.

Copy

Naoki ABE, Jun-ichi TAKEUCHI, Manfred K. WARMUTH, "Polynomial Learnability of Stochastic Rules with Respect to the KL-Divergence and Quadratic Distance" in IEICE TRANSACTIONS on Information,
vol. E84-D, no. 3, pp. 299-316, March 2001, doi: .

Abstract: We consider the problem of efficient learning of probabilistic concepts (p-concepts) and more generally stochastic rules in the sense defined by Kearns and Schapire and by Yamanishi. Their models extend the PAC-learning model of Valiant to the learning scenario in which the target concept or function is stochastic rather than deterministic as in Valiant's original model. In this paper, we consider the learnability of stochastic rules with respect to the classic 'Kullback-Leibler divergence' (KL divergence) as well as the quadratic distance as the distance measure between the rules. First, we show that the notion of polynomial time learnability of p-concepts and stochastic rules with fixed range size using the KL divergence is in fact equivalent to the same notion using the quadratic distance, and hence any of the distances considered in [6] and [18]: the quadratic, variation, and Hellinger distances. As a corollary, it follows that a wide range of classes of p-concepts which were shown to be polynomially learnable with respect to the quadratic distance in [6] are also learnable with respect to the KL divergence. The sample and time complexity of algorithms that would be obtained by the above general equivalence, however, are far from optimal. We present a polynomial learning algorithm with reasonable sample and time complexity for the important class of convex linear combinations of stochastic rules. We also develop a simple and versatile technique for obtaining sample complexity bounds for learning classes of stochastic rules with respect to the KL-divergence and quadratic distance, and apply them to produce bounds for the classes of probabilistic finite state acceptors (automata), probabilistic decision lists, and convex linear combinations.

URL: https://global.ieice.org/en_transactions/information/10.1587/e84-d_3_299/_p

Copy

@ARTICLE{e84-d_3_299,

author={Naoki ABE, Jun-ichi TAKEUCHI, Manfred K. WARMUTH, },

journal={IEICE TRANSACTIONS on Information},

title={Polynomial Learnability of Stochastic Rules with Respect to the KL-Divergence and Quadratic Distance},

year={2001},

volume={E84-D},

number={3},

pages={299-316},

abstract={We consider the problem of efficient learning of probabilistic concepts (p-concepts) and more generally stochastic rules in the sense defined by Kearns and Schapire and by Yamanishi. Their models extend the PAC-learning model of Valiant to the learning scenario in which the target concept or function is stochastic rather than deterministic as in Valiant's original model. In this paper, we consider the learnability of stochastic rules with respect to the classic 'Kullback-Leibler divergence' (KL divergence) as well as the quadratic distance as the distance measure between the rules. First, we show that the notion of polynomial time learnability of p-concepts and stochastic rules with fixed range size using the KL divergence is in fact equivalent to the same notion using the quadratic distance, and hence any of the distances considered in [6] and [18]: the quadratic, variation, and Hellinger distances. As a corollary, it follows that a wide range of classes of p-concepts which were shown to be polynomially learnable with respect to the quadratic distance in [6] are also learnable with respect to the KL divergence. The sample and time complexity of algorithms that would be obtained by the above general equivalence, however, are far from optimal. We present a polynomial learning algorithm with reasonable sample and time complexity for the important class of convex linear combinations of stochastic rules. We also develop a simple and versatile technique for obtaining sample complexity bounds for learning classes of stochastic rules with respect to the KL-divergence and quadratic distance, and apply them to produce bounds for the classes of probabilistic finite state acceptors (automata), probabilistic decision lists, and convex linear combinations.},

keywords={},

doi={},

ISSN={},

month={March},}

Copy

TY - JOUR

TI - Polynomial Learnability of Stochastic Rules with Respect to the KL-Divergence and Quadratic Distance

T2 - IEICE TRANSACTIONS on Information

SP - 299

EP - 316

AU - Naoki ABE

AU - Jun-ichi TAKEUCHI

AU - Manfred K. WARMUTH

PY - 2001

DO -

JO - IEICE TRANSACTIONS on Information

SN -

VL - E84-D

IS - 3

JA - IEICE TRANSACTIONS on Information

Y1 - March 2001

AB - We consider the problem of efficient learning of probabilistic concepts (p-concepts) and more generally stochastic rules in the sense defined by Kearns and Schapire and by Yamanishi. Their models extend the PAC-learning model of Valiant to the learning scenario in which the target concept or function is stochastic rather than deterministic as in Valiant's original model. In this paper, we consider the learnability of stochastic rules with respect to the classic 'Kullback-Leibler divergence' (KL divergence) as well as the quadratic distance as the distance measure between the rules. First, we show that the notion of polynomial time learnability of p-concepts and stochastic rules with fixed range size using the KL divergence is in fact equivalent to the same notion using the quadratic distance, and hence any of the distances considered in [6] and [18]: the quadratic, variation, and Hellinger distances. As a corollary, it follows that a wide range of classes of p-concepts which were shown to be polynomially learnable with respect to the quadratic distance in [6] are also learnable with respect to the KL divergence. The sample and time complexity of algorithms that would be obtained by the above general equivalence, however, are far from optimal. We present a polynomial learning algorithm with reasonable sample and time complexity for the important class of convex linear combinations of stochastic rules. We also develop a simple and versatile technique for obtaining sample complexity bounds for learning classes of stochastic rules with respect to the KL-divergence and quadratic distance, and apply them to produce bounds for the classes of probabilistic finite state acceptors (automata), probabilistic decision lists, and convex linear combinations.

ER -