This paper proposes several novel hierarchical interconnection networks based on the (3, 3)-graphs, namely folded (3, 3)-networks, root-folded (3, 3)-networks, recursively expanded (3, 3)-networks, and flooded (3, 3)-networks. Just as the hypercubes, CCC, Peterson-based networks, and Heawood-based networks, these hierarchical networks have the following nice properties: regular topology, high scalability, and small diameters. Due to these important properties, these hierarchical networks seem to have the potential as alternatives for the future interconnection structures of multicomputer systems, especially massively parallel processors (MPPs). Furthermore, this paper will present the routing and broadcasting algorithms for these proposed networks to demonstrate that these algorithms are as elegant as the algorithms for hypercubes, CCC, and Petersen- or Heawood-based networks.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Gene Eu JAN, Yuan-Shin HWANG, "Hierarchical Interconnection Networks Based on (3, 3)-Graphs for Massively Parallel Processors" in IEICE TRANSACTIONS on Information,
vol. E87-D, no. 7, pp. 1649-1656, July 2004, doi: .
Abstract: This paper proposes several novel hierarchical interconnection networks based on the (3, 3)-graphs, namely folded (3, 3)-networks, root-folded (3, 3)-networks, recursively expanded (3, 3)-networks, and flooded (3, 3)-networks. Just as the hypercubes, CCC, Peterson-based networks, and Heawood-based networks, these hierarchical networks have the following nice properties: regular topology, high scalability, and small diameters. Due to these important properties, these hierarchical networks seem to have the potential as alternatives for the future interconnection structures of multicomputer systems, especially massively parallel processors (MPPs). Furthermore, this paper will present the routing and broadcasting algorithms for these proposed networks to demonstrate that these algorithms are as elegant as the algorithms for hypercubes, CCC, and Petersen- or Heawood-based networks.
URL: https://global.ieice.org/en_transactions/information/10.1587/e87-d_7_1649/_p
Copy
@ARTICLE{e87-d_7_1649,
author={Gene Eu JAN, Yuan-Shin HWANG, },
journal={IEICE TRANSACTIONS on Information},
title={Hierarchical Interconnection Networks Based on (3, 3)-Graphs for Massively Parallel Processors},
year={2004},
volume={E87-D},
number={7},
pages={1649-1656},
abstract={This paper proposes several novel hierarchical interconnection networks based on the (3, 3)-graphs, namely folded (3, 3)-networks, root-folded (3, 3)-networks, recursively expanded (3, 3)-networks, and flooded (3, 3)-networks. Just as the hypercubes, CCC, Peterson-based networks, and Heawood-based networks, these hierarchical networks have the following nice properties: regular topology, high scalability, and small diameters. Due to these important properties, these hierarchical networks seem to have the potential as alternatives for the future interconnection structures of multicomputer systems, especially massively parallel processors (MPPs). Furthermore, this paper will present the routing and broadcasting algorithms for these proposed networks to demonstrate that these algorithms are as elegant as the algorithms for hypercubes, CCC, and Petersen- or Heawood-based networks.},
keywords={},
doi={},
ISSN={},
month={July},}
Copy
TY - JOUR
TI - Hierarchical Interconnection Networks Based on (3, 3)-Graphs for Massively Parallel Processors
T2 - IEICE TRANSACTIONS on Information
SP - 1649
EP - 1656
AU - Gene Eu JAN
AU - Yuan-Shin HWANG
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E87-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2004
AB - This paper proposes several novel hierarchical interconnection networks based on the (3, 3)-graphs, namely folded (3, 3)-networks, root-folded (3, 3)-networks, recursively expanded (3, 3)-networks, and flooded (3, 3)-networks. Just as the hypercubes, CCC, Peterson-based networks, and Heawood-based networks, these hierarchical networks have the following nice properties: regular topology, high scalability, and small diameters. Due to these important properties, these hierarchical networks seem to have the potential as alternatives for the future interconnection structures of multicomputer systems, especially massively parallel processors (MPPs). Furthermore, this paper will present the routing and broadcasting algorithms for these proposed networks to demonstrate that these algorithms are as elegant as the algorithms for hypercubes, CCC, and Petersen- or Heawood-based networks.
ER -