The search functionality is under construction.

IEICE TRANSACTIONS on Information

A Two-Dimensional Quantum Transport Simulation of Nanoscale Double-Gate MOSFETs Using Parallel Adaptive Technique

Yiming LI, Shao-Ming YU

  • Full Text Views

    0

  • Cite this

Summary :

In this paper we apply a parallel adaptive solution algorithm to simulate nanoscale double-gate metal-oxide-semiconductor field effect transistors (MOSFETs) on a personal computer (PC)-based Linux cluster with the message passing interface (MPI) libraries. Based on a posteriori error estimation, the triangular mesh generation, the adaptive finite volume method, the monotone iterative method, and the parallel domain decomposition algorithm, a set of two-dimensional quantum correction hydrodynamic (HD) equations is solved numerically on our constructed cluster system. This parallel adaptive simulation methodology with 1-irregular mesh was successfully developed and applied to deep-submicron semiconductor device simulation in our recent work. A 10 nm n-type double-gate MOSFET is simulated with the developed parallel adaptive simulator. In terms of physical quantities and refined adaptive mesh, simulation results demonstrate very good accuracy and computational efficiency. Benchmark results, such as load-balancing, speedup, and parallel efficiency are achieved and exhibit excellent parallel performance. On a 16 nodes PC-based Linux cluster, the maximum difference among CPUs is less than 6%. A 12.8 times speedup and 80% parallel efficiency are simultaneously attained with respect to different simulation cases.

Publication
IEICE TRANSACTIONS on Information Vol.E87-D No.7 pp.1751-1758
Publication Date
2004/07/01
Publicized
Online ISSN
DOI
Type of Manuscript
Special Section PAPER (Special Section on Hardware/Software Support for High Performance Scientific and Engineering Computing)
Category
Scientific and Engineering Computing with Applications

Authors

Keyword