The high efficiency video coding (HEVC) standard has significantly improved compression performance for many applications, including remote desktop and desktop sharing. Screen content video coding is widely used in applications with a high demand for real-time performance. HEVC usually introduces great computational complexity, which makes fast algorithms necessary to offset the limited computing power of HEVC encoders. In this study, a statistical analysis of several screen content sequences is first performed to better account for the completely different statistics of natural images and videos. Second, a fast coding unit (CU) splitting method is proposed, which aims to reduce HEVC intra coding computational complexity, especially in screen content coding. In the proposed scheme, CU size decision is made by checking the smoothness of the luminance values in every coding tree unit. Experiments demonstrate that in HEVC range extension standard, the proposed scheme can save an average of 29% computational complexity with 0.9% Bjøntegaard Delta rate (BD-rate) increase compared with HM13.0+RExt6.0 anchor for screen content sequences. For default HEVC, the proposed scheme can reduce encoding time by an average of 38% with negligible loss of coding efficiency.
Mengmeng ZHANG
North China University of Technology
Yang ZHANG
North China University of Technology
Huihui BAI
Beijing Jiaotong University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Mengmeng ZHANG, Yang ZHANG, Huihui BAI, "Fast CU Splitting in HEVC Intra Coding for Screen Content Coding" in IEICE TRANSACTIONS on Information,
vol. E98-D, no. 2, pp. 467-470, February 2015, doi: 10.1587/transinf.2014EDL8081.
Abstract: The high efficiency video coding (HEVC) standard has significantly improved compression performance for many applications, including remote desktop and desktop sharing. Screen content video coding is widely used in applications with a high demand for real-time performance. HEVC usually introduces great computational complexity, which makes fast algorithms necessary to offset the limited computing power of HEVC encoders. In this study, a statistical analysis of several screen content sequences is first performed to better account for the completely different statistics of natural images and videos. Second, a fast coding unit (CU) splitting method is proposed, which aims to reduce HEVC intra coding computational complexity, especially in screen content coding. In the proposed scheme, CU size decision is made by checking the smoothness of the luminance values in every coding tree unit. Experiments demonstrate that in HEVC range extension standard, the proposed scheme can save an average of 29% computational complexity with 0.9% Bjøntegaard Delta rate (BD-rate) increase compared with HM13.0+RExt6.0 anchor for screen content sequences. For default HEVC, the proposed scheme can reduce encoding time by an average of 38% with negligible loss of coding efficiency.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2014EDL8081/_p
Copy
@ARTICLE{e98-d_2_467,
author={Mengmeng ZHANG, Yang ZHANG, Huihui BAI, },
journal={IEICE TRANSACTIONS on Information},
title={Fast CU Splitting in HEVC Intra Coding for Screen Content Coding},
year={2015},
volume={E98-D},
number={2},
pages={467-470},
abstract={The high efficiency video coding (HEVC) standard has significantly improved compression performance for many applications, including remote desktop and desktop sharing. Screen content video coding is widely used in applications with a high demand for real-time performance. HEVC usually introduces great computational complexity, which makes fast algorithms necessary to offset the limited computing power of HEVC encoders. In this study, a statistical analysis of several screen content sequences is first performed to better account for the completely different statistics of natural images and videos. Second, a fast coding unit (CU) splitting method is proposed, which aims to reduce HEVC intra coding computational complexity, especially in screen content coding. In the proposed scheme, CU size decision is made by checking the smoothness of the luminance values in every coding tree unit. Experiments demonstrate that in HEVC range extension standard, the proposed scheme can save an average of 29% computational complexity with 0.9% Bjøntegaard Delta rate (BD-rate) increase compared with HM13.0+RExt6.0 anchor for screen content sequences. For default HEVC, the proposed scheme can reduce encoding time by an average of 38% with negligible loss of coding efficiency.},
keywords={},
doi={10.1587/transinf.2014EDL8081},
ISSN={1745-1361},
month={February},}
Copy
TY - JOUR
TI - Fast CU Splitting in HEVC Intra Coding for Screen Content Coding
T2 - IEICE TRANSACTIONS on Information
SP - 467
EP - 470
AU - Mengmeng ZHANG
AU - Yang ZHANG
AU - Huihui BAI
PY - 2015
DO - 10.1587/transinf.2014EDL8081
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E98-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2015
AB - The high efficiency video coding (HEVC) standard has significantly improved compression performance for many applications, including remote desktop and desktop sharing. Screen content video coding is widely used in applications with a high demand for real-time performance. HEVC usually introduces great computational complexity, which makes fast algorithms necessary to offset the limited computing power of HEVC encoders. In this study, a statistical analysis of several screen content sequences is first performed to better account for the completely different statistics of natural images and videos. Second, a fast coding unit (CU) splitting method is proposed, which aims to reduce HEVC intra coding computational complexity, especially in screen content coding. In the proposed scheme, CU size decision is made by checking the smoothness of the luminance values in every coding tree unit. Experiments demonstrate that in HEVC range extension standard, the proposed scheme can save an average of 29% computational complexity with 0.9% Bjøntegaard Delta rate (BD-rate) increase compared with HM13.0+RExt6.0 anchor for screen content sequences. For default HEVC, the proposed scheme can reduce encoding time by an average of 38% with negligible loss of coding efficiency.
ER -