We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.
Shu FUJITA
Nagoya University
Keita TAKAHASHI
Nagoya University
Toshiaki FUJII
Nagoya University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Shu FUJITA, Keita TAKAHASHI, Toshiaki FUJII, "High-Quality Multi-View Image Extraction from a Light Field Camera Considering Its Physical Pixel Arrangement" in IEICE TRANSACTIONS on Information,
vol. E102-D, no. 4, pp. 702-714, April 2019, doi: 10.1587/transinf.2018AWI0004.
Abstract: We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018AWI0004/_p
Copy
@ARTICLE{e102-d_4_702,
author={Shu FUJITA, Keita TAKAHASHI, Toshiaki FUJII, },
journal={IEICE TRANSACTIONS on Information},
title={High-Quality Multi-View Image Extraction from a Light Field Camera Considering Its Physical Pixel Arrangement},
year={2019},
volume={E102-D},
number={4},
pages={702-714},
abstract={We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.},
keywords={},
doi={10.1587/transinf.2018AWI0004},
ISSN={1745-1361},
month={April},}
Copy
TY - JOUR
TI - High-Quality Multi-View Image Extraction from a Light Field Camera Considering Its Physical Pixel Arrangement
T2 - IEICE TRANSACTIONS on Information
SP - 702
EP - 714
AU - Shu FUJITA
AU - Keita TAKAHASHI
AU - Toshiaki FUJII
PY - 2019
DO - 10.1587/transinf.2018AWI0004
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E102-D
IS - 4
JA - IEICE TRANSACTIONS on Information
Y1 - April 2019
AB - We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.
ER -