The search functionality is under construction.

IEICE TRANSACTIONS on Information

Resilient Edge: A Scalable, Robust Network Function Backend

Yutaro HAYAKAWA, Kenichi YASUKATA, Jin NAKAZAWA, Michio HONDA

  • Full Text Views

    0

  • Cite this

Summary :

Increasing hardware resources, such as multi-core and multi-socket CPUs, memory capacity and high-speed NICs, impose significant challenges on Network Function Virtualization (NFV) backends. They increase the potential numbers of per-server NFs or tenants, which requires a packet switching architecture that is not only scalable to large number of virtual ports, but also robust to attacks on the data plane. This is a real problem; a recent study has reported that Open vSwitch, a widely used software switch, had a buffer-overflow bug in its data plane that results the entire SDN domain to be hijacked by worms propagated in the network. In order to address this problem, we propose REdge. It scales to thousands of virtual ports or NFs (as opposed to hundreds in the current state-of-the art), and protect modular, flexible packet switching logic against various bugs, such as buffer overflow and other unexpected operations using static program checking. When 2048 NFs are active and packets are distributed to them based on the MAC or IP addresses, REdge achieves 3.16 Mpps or higher packet forwarding rates for 60 byte packets and achieves the wire rate for 1500 byte packets in the 25 Gbps link.

Publication
IEICE TRANSACTIONS on Information Vol.E102-D No.3 pp.550-558
Publication Date
2019/03/01
Publicized
2018/12/04
Online ISSN
1745-1361
DOI
10.1587/transinf.2018EDP7176
Type of Manuscript
PAPER
Category
Information Network

Authors

Yutaro HAYAKAWA
  Keio University
Kenichi YASUKATA
  University of Liege
Jin NAKAZAWA
  Keio University
Michio HONDA
  NEC Labs Europe

Keyword