In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.
Hon-Chan CHEN
National Chin-Yi University of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hon-Chan CHEN, "The Panpositionable Pancyclicity of Locally Twisted Cubes" in IEICE TRANSACTIONS on Information,
vol. E101-D, no. 12, pp. 2902-2907, December 2018, doi: 10.1587/transinf.2018PAP0006.
Abstract: In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2018PAP0006/_p
Copy
@ARTICLE{e101-d_12_2902,
author={Hon-Chan CHEN, },
journal={IEICE TRANSACTIONS on Information},
title={The Panpositionable Pancyclicity of Locally Twisted Cubes},
year={2018},
volume={E101-D},
number={12},
pages={2902-2907},
abstract={In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.},
keywords={},
doi={10.1587/transinf.2018PAP0006},
ISSN={1745-1361},
month={December},}
Copy
TY - JOUR
TI - The Panpositionable Pancyclicity of Locally Twisted Cubes
T2 - IEICE TRANSACTIONS on Information
SP - 2902
EP - 2907
AU - Hon-Chan CHEN
PY - 2018
DO - 10.1587/transinf.2018PAP0006
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E101-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2018
AB - In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.
ER -