The search functionality is under construction.
The search functionality is under construction.

Air Quality Index Forecasting via Deep Dictionary Learning

Bin CHEN

  • Full Text Views

    0

  • Cite this

Summary :

Air quality index (AQI) is a non-dimensional index for the description of air quality, and is widely used in air quality management schemes. A novel method for Air Quality Index Forecasting based on Deep Dictionary Learning (AQIF-DDL) and machine vision is proposed in this paper. A sky image is used as the input of the method, and the output is the forecasted AQI value. The deep dictionary learning is employed to automatically extract the sky image features and achieve the AQI forecasting. The idea of learning deeper dictionary levels stemmed from the deep learning is also included to increase the forecasting accuracy and stability. The proposed AQIF-DDL is compared with other deep learning based methods, such as deep belief network, stacked autoencoder and convolutional neural network. The experimental results indicate that the proposed method leads to good performance on AQI forecasting.

Publication
IEICE TRANSACTIONS on Information Vol.E103-D No.5 pp.1118-1125
Publication Date
2020/05/01
Publicized
2020/02/20
Online ISSN
1745-1361
DOI
10.1587/transinf.2019EDP7296
Type of Manuscript
PAPER
Category
Image Recognition, Computer Vision

Authors

Bin CHEN
  Jiaxing University

Keyword