This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
Pratish DATTA
NTT Research, Inc.
Tatsuaki OKAMOTO
NTT Research, Inc.
Katsuyuki TAKASHIMA
Mitsubishi Electric Corporation
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Pratish DATTA, Tatsuaki OKAMOTO, Katsuyuki TAKASHIMA, "Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption" in IEICE TRANSACTIONS on Information,
vol. E103-D, no. 7, pp. 1556-1597, July 2020, doi: 10.1587/transinf.2019ICP0001.
Abstract: This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2019ICP0001/_p
Copy
@ARTICLE{e103-d_7_1556,
author={Pratish DATTA, Tatsuaki OKAMOTO, Katsuyuki TAKASHIMA, },
journal={IEICE TRANSACTIONS on Information},
title={Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption},
year={2020},
volume={E103-D},
number={7},
pages={1556-1597},
abstract={This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.},
keywords={},
doi={10.1587/transinf.2019ICP0001},
ISSN={1745-1361},
month={July},}
Copy
TY - JOUR
TI - Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption
T2 - IEICE TRANSACTIONS on Information
SP - 1556
EP - 1597
AU - Pratish DATTA
AU - Tatsuaki OKAMOTO
AU - Katsuyuki TAKASHIMA
PY - 2020
DO - 10.1587/transinf.2019ICP0001
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E103-D
IS - 7
JA - IEICE TRANSACTIONS on Information
Y1 - July 2020
AB - This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
ER -