The flooding DDoS attack is a serious problem these days. In order to detect the flooding DDoS attack, the survival approaches and the mitigation approaches have been investigated. Since the survival approach occurs the burden on the victims, the mitigation approach is mainly studied. As for the mitigation approaches, to detect the flooding DDoS attack, the conventional schemes using the bloom filter, machine learning, and pattern analyzation have been investigated. However, those schemes are not effective to ensure the high accuracy (ACC), the high true positive rate (TPR), and the low false positive rate (FPR). In addition, the data size and calculation time are high. Moreover, the performance is not effective from the fluctuant attack packet per second (pps). In order to effectively detect the flooding DDoS attack, we propose the lightweight detection using bloom filter against flooding DDoS attack. To detect the flooding DDoS attack and ensure the high accuracy, the high true positive rate, and the low false positive rate, the dec-all (decrement-all) operation and the checkpoint are flexibly changed from the fluctuant pps in the bloom filter. Since we only consider the IP address, all kinds of flooding attacks can be detected without the blacklist and whitelist. Moreover, there is no complexity to recognize the attack. By the computer simulation with the datasets, we show our scheme achieves an accuracy of 97.5%. True positive rate and false positive rate show 97.8% and 6.3%, respectively. The data size for processing is much small as 280bytes. Furthermore, our scheme can detect the flooding DDoS attack at once in 11.1sec calculation time.
Sanghun CHOI
Keio University
Yichen AN
Keio University
Iwao SASASE
Keio University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sanghun CHOI, Yichen AN, Iwao SASASE, "A Lightweight Detection Using Bloom Filter against Flooding DDoS Attack" in IEICE TRANSACTIONS on Information,
vol. E103-D, no. 12, pp. 2600-2610, December 2020, doi: 10.1587/transinf.2020EDP7115.
Abstract: The flooding DDoS attack is a serious problem these days. In order to detect the flooding DDoS attack, the survival approaches and the mitigation approaches have been investigated. Since the survival approach occurs the burden on the victims, the mitigation approach is mainly studied. As for the mitigation approaches, to detect the flooding DDoS attack, the conventional schemes using the bloom filter, machine learning, and pattern analyzation have been investigated. However, those schemes are not effective to ensure the high accuracy (ACC), the high true positive rate (TPR), and the low false positive rate (FPR). In addition, the data size and calculation time are high. Moreover, the performance is not effective from the fluctuant attack packet per second (pps). In order to effectively detect the flooding DDoS attack, we propose the lightweight detection using bloom filter against flooding DDoS attack. To detect the flooding DDoS attack and ensure the high accuracy, the high true positive rate, and the low false positive rate, the dec-all (decrement-all) operation and the checkpoint are flexibly changed from the fluctuant pps in the bloom filter. Since we only consider the IP address, all kinds of flooding attacks can be detected without the blacklist and whitelist. Moreover, there is no complexity to recognize the attack. By the computer simulation with the datasets, we show our scheme achieves an accuracy of 97.5%. True positive rate and false positive rate show 97.8% and 6.3%, respectively. The data size for processing is much small as 280bytes. Furthermore, our scheme can detect the flooding DDoS attack at once in 11.1sec calculation time.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2020EDP7115/_p
Copy
@ARTICLE{e103-d_12_2600,
author={Sanghun CHOI, Yichen AN, Iwao SASASE, },
journal={IEICE TRANSACTIONS on Information},
title={A Lightweight Detection Using Bloom Filter against Flooding DDoS Attack},
year={2020},
volume={E103-D},
number={12},
pages={2600-2610},
abstract={The flooding DDoS attack is a serious problem these days. In order to detect the flooding DDoS attack, the survival approaches and the mitigation approaches have been investigated. Since the survival approach occurs the burden on the victims, the mitigation approach is mainly studied. As for the mitigation approaches, to detect the flooding DDoS attack, the conventional schemes using the bloom filter, machine learning, and pattern analyzation have been investigated. However, those schemes are not effective to ensure the high accuracy (ACC), the high true positive rate (TPR), and the low false positive rate (FPR). In addition, the data size and calculation time are high. Moreover, the performance is not effective from the fluctuant attack packet per second (pps). In order to effectively detect the flooding DDoS attack, we propose the lightweight detection using bloom filter against flooding DDoS attack. To detect the flooding DDoS attack and ensure the high accuracy, the high true positive rate, and the low false positive rate, the dec-all (decrement-all) operation and the checkpoint are flexibly changed from the fluctuant pps in the bloom filter. Since we only consider the IP address, all kinds of flooding attacks can be detected without the blacklist and whitelist. Moreover, there is no complexity to recognize the attack. By the computer simulation with the datasets, we show our scheme achieves an accuracy of 97.5%. True positive rate and false positive rate show 97.8% and 6.3%, respectively. The data size for processing is much small as 280bytes. Furthermore, our scheme can detect the flooding DDoS attack at once in 11.1sec calculation time.},
keywords={},
doi={10.1587/transinf.2020EDP7115},
ISSN={1745-1361},
month={December},}
Copy
TY - JOUR
TI - A Lightweight Detection Using Bloom Filter against Flooding DDoS Attack
T2 - IEICE TRANSACTIONS on Information
SP - 2600
EP - 2610
AU - Sanghun CHOI
AU - Yichen AN
AU - Iwao SASASE
PY - 2020
DO - 10.1587/transinf.2020EDP7115
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E103-D
IS - 12
JA - IEICE TRANSACTIONS on Information
Y1 - December 2020
AB - The flooding DDoS attack is a serious problem these days. In order to detect the flooding DDoS attack, the survival approaches and the mitigation approaches have been investigated. Since the survival approach occurs the burden on the victims, the mitigation approach is mainly studied. As for the mitigation approaches, to detect the flooding DDoS attack, the conventional schemes using the bloom filter, machine learning, and pattern analyzation have been investigated. However, those schemes are not effective to ensure the high accuracy (ACC), the high true positive rate (TPR), and the low false positive rate (FPR). In addition, the data size and calculation time are high. Moreover, the performance is not effective from the fluctuant attack packet per second (pps). In order to effectively detect the flooding DDoS attack, we propose the lightweight detection using bloom filter against flooding DDoS attack. To detect the flooding DDoS attack and ensure the high accuracy, the high true positive rate, and the low false positive rate, the dec-all (decrement-all) operation and the checkpoint are flexibly changed from the fluctuant pps in the bloom filter. Since we only consider the IP address, all kinds of flooding attacks can be detected without the blacklist and whitelist. Moreover, there is no complexity to recognize the attack. By the computer simulation with the datasets, we show our scheme achieves an accuracy of 97.5%. True positive rate and false positive rate show 97.8% and 6.3%, respectively. The data size for processing is much small as 280bytes. Furthermore, our scheme can detect the flooding DDoS attack at once in 11.1sec calculation time.
ER -