Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.
Hyun KWON
Korea Military Academy
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hyun KWON, "Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network" in IEICE TRANSACTIONS on Information,
vol. E106-D, no. 2, pp. 262-266, February 2023, doi: 10.1587/transinf.2021EDL8080.
Abstract: Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2021EDL8080/_p
Copy
@ARTICLE{e106-d_2_262,
author={Hyun KWON, },
journal={IEICE TRANSACTIONS on Information},
title={Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network},
year={2023},
volume={E106-D},
number={2},
pages={262-266},
abstract={Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.},
keywords={},
doi={10.1587/transinf.2021EDL8080},
ISSN={1745-1361},
month={February},}
Copy
TY - JOUR
TI - Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network
T2 - IEICE TRANSACTIONS on Information
SP - 262
EP - 266
AU - Hyun KWON
PY - 2023
DO - 10.1587/transinf.2021EDL8080
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E106-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2023
AB - Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.
ER -